A control scheme for monitoring process covariance matrices with more variables than observations

In this paper, we propose a new control chart that integrates a powerful highdimensional covariance matrix test with the exponentially weighted moving average procedure for monitoring high-dimensional variability with individual observations. Design and implementation of the proposed chart are provided, including search algorithm and a table for the control limits, diagnostic aids after the signal, effect of misspecifying the in-control distribution and a bootstrap procedure. Monte-Carlo simulation results show that the new chart, with its powerful inherited properties, provides satisfactory performance in various cases, especially for covariance shifts that involve diagonal components. The application of the proposed method is illustrated with a real data example from a white wine production process.

[1]  Chien-Wei Wu,et al.  Monitoring Multivariate Process Variability for Individual Observations , 2007 .

[2]  Douglas M. Hawkins,et al.  A Multivariate Change-Point Model for Change in Mean Vector and/or Covariance Structure , 2009 .

[3]  Edgard M. Maboudou-Tchao,et al.  A LASSO Chart for Monitoring the Covariance Matrix , 2013 .

[4]  Bo Li,et al.  Simultaneous monitoring of process mean vector and covariance matrix via penalized likelihood estimation , 2014, Comput. Stat. Data Anal..

[5]  Wei Jiang,et al.  High-Dimensional Process Monitoring and Fault Isolation via Variable Selection , 2009 .

[6]  Dyah Erny Herwindiati,et al.  Multivariate Process Variability Monitoring , 2008 .

[7]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[8]  James M. Lucas,et al.  Exponentially weighted moving average control schemes: Properties and enhancements , 1990 .

[9]  Fugee Tsung,et al.  A new multivariate EWMA scheme for monitoring covariance matrices , 2014 .

[10]  Fugee Tsung,et al.  A Variable-Selection-Based Multivariate EWMA Chart for Process Monitoring and Diagnosis , 2012 .

[11]  P. Moschopoulos,et al.  A form of multivariate gamma distribution , 1992 .

[12]  Mahmoud A. Mahmoud,et al.  The Performance of the Multivariate Adaptive Exponentially Weighted Moving Average Control Chart with Estimated Parameters , 2016, Qual. Reliab. Eng. Int..

[13]  William H. Woodall,et al.  Change-point detection of mean vector or covariance matrix shifts using multivariate individual observations , 2000 .

[14]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[15]  Maman A. Djauhari,et al.  Improved Monitoring of Multivariate Process Variability , 2005 .

[16]  Edgard M. Maboudou-Tchao Kernel methods for changes detection in covariance matrices , 2018, Commun. Stat. Simul. Comput..

[17]  Douglas M. Hawkins,et al.  Multivariate Exponentially Weighted Moving Covariance Matrix , 2008, Technometrics.

[18]  H. Nagao,et al.  On Some Test Criteria for Covariance Matrix , 1973 .

[19]  Pi-Erh Lin,et al.  Some characterizations of the multivariate t distribution , 1972 .

[20]  James R. Schott,et al.  A test for the equality of covariance matrices when the dimension is large relative to the sample sizes , 2007, Comput. Stat. Data Anal..

[21]  Philippe Castagliola,et al.  Some Recent Developments on the Effects of Parameter Estimation on Control Charts , 2014, Qual. Reliab. Eng. Int..

[22]  Smiley W. Cheng,et al.  A New Multivariate Control Chart for Monitoring Both Location and Dispersion , 2005 .

[23]  A. B. Yeh,et al.  A likelihood-ratio-based EWMA control chart for monitoring variability of multivariate normal processes , 2004 .

[24]  Loon Ching Tang,et al.  Multivariate charting techniques: a review and a line‐column approach , 2010, Qual. Reliab. Eng. Int..

[25]  Wei Jiang,et al.  A LASSO-Based Diagnostic Framework for Multivariate Statistical Process Control , 2011, Technometrics.

[26]  A. Grigoryan,et al.  Multivariate double sampling |S| charts for controlling process variability , 2005 .

[27]  Arthur B. Yeh,et al.  Monitoring multivariate process variability with individual observations via penalised likelihood estimation , 2012 .

[28]  Fugee Tsung,et al.  A spatial rank‐based multivariate EWMA control chart , 2012 .

[29]  Longcheen Huwang,et al.  A Multivariate Sign Chart for Monitoring Process Shape Parameters , 2013 .

[30]  Seyed Taghi Akhavan Niaki,et al.  New control charts for monitoring covariance matrix with individual observations , 2009, Qual. Reliab. Eng. Int..

[31]  Giovanna Capizzi,et al.  A Least Angle Regression Control Chart for Multidimensional Data , 2011, Technometrics.

[32]  Zhonghua Li,et al.  A new adaptive CUSUM control chart for detecting the multivariate process mean , 2011, Qual. Reliab. Eng. Int..

[33]  Fugee Tsung,et al.  A Reference-Free Cuscore Chart for Dynamic Mean Change Detection and a Unified Framework for Charting Performance Comparison , 2006 .

[34]  M. Srivastava Some Tests Concerning the Covariance Matrix in High Dimensional Data , 2005 .

[35]  Douglas C. Montgomery,et al.  Some Current Directions in the Theory and Application of Statistical Process Monitoring , 2014 .

[36]  W. H. Deitenbeck Introduction to statistical process control. , 1995, Healthcare facilities management series.

[37]  Olivier Ledoit,et al.  Some hypothesis tests for the covariance matrix when the dimension is large compared to the sample size , 2002 .

[38]  Stelios Psarakis,et al.  Multivariate statistical process control charts: an overview , 2007, Qual. Reliab. Eng. Int..

[39]  J. Nickerson,et al.  A multivariate exponentially weighted moving average control chart for photovoltaic processes , 2005, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005..

[40]  Jyh-Jen Horng Shiau,et al.  Effective Control Charts for Monitoring Multivariate Process Dispersion , 2012, Qual. Reliab. Eng. Int..

[41]  Seoung Bum Kim,et al.  Bootstrap-Based T 2 Multivariate Control Charts , 2011, Commun. Stat. Simul. Comput..

[42]  Axel Gandy,et al.  Guaranteed Conditional Performance of Control Charts via Bootstrap Methods , 2011, 1111.4180.

[43]  Abdel Magid Hamouda,et al.  Variable Selection-based Multivariate Cumulative Sum Control Chart , 2017, Qual. Reliab. Eng. Int..

[44]  Fred Spiring,et al.  Introduction to Statistical Quality Control , 2007, Technometrics.

[45]  Z. Bai,et al.  CLT for linear spectral statistics of large dimensional sample covariance matrices with dependent data , 2017, Statistical Papers.

[46]  Snigdhansu Chatterjee,et al.  Distribution-free cumulative sum control charts using bootstrap-based control limits , 2009, 0906.1421.

[47]  Zhonghua Li,et al.  A multivariate control chart for simultaneously monitoring process mean and variability , 2010, Comput. Stat. Data Anal..

[48]  Fugee Tsung,et al.  Directional MEWMA Schemes for Multistage Process Monitoring and Diagnosis , 2008 .

[49]  Hassen Taleb,et al.  An assessment of the kernel‐distance‐based multivariate control chart through an industrial application , 2011, Qual. Reliab. Eng. Int..

[50]  Chien-Wei Wu,et al.  A multivariate EWMA control chart for monitoring process variability with individual observations , 2005 .

[51]  Arthur B. Yeh,et al.  Monitoring the covariance matrix via penalized likelihood estimation , 2013 .

[52]  Ross Sparks Monitoring Highly Correlated Multivariate Processes Using Hotelling's T2 Statistic: Problems and Possible Solutions , 2015, Qual. Reliab. Eng. Int..

[53]  Arthur B. Yeh,et al.  A multivariate exponentially weighted moving average control chart for monitoring process variability , 2003 .

[54]  Charles W. Champ,et al.  A multivariate exponentially weighted moving average control chart , 1992 .

[55]  Edgard M. Maboudou-Tchao,et al.  Monitoring the covariance matrix with fewer observations than variables , 2013, Comput. Stat. Data Anal..

[56]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[57]  Paulo Cortez,et al.  Modeling wine preferences by data mining from physicochemical properties , 2009, Decis. Support Syst..

[58]  Arthur B. Yeh,et al.  Multivariate Control Charts for Monitoring Covariance Matrix: A Review , 2006 .

[59]  Joseph J. Pignatiello,et al.  Estimation of the Change Point of a Normal Process Mean in SPC Applications , 2001 .