Tuning the functionalities of a mesocrystal via structural coupling

In the past decades, mesocrystal, a kind of nanocrystals with specific crystallographic orientation, has drawn a lot of attention due to its intriguing functionalities. While the research community keeps searching for new mesocrystal systems, it is equally crucial to develop new approaches to tune the properties of mesocrystals. In this work, a self-organized two-dimensional mesocrystal composed of highly oriented CoFe2O4 (CFO) nano-crystals with assistance of different perovskite matrices is studied as a model system. We have demonstrated that the strain state and corresponding magnetic properties of the CFO mesocrystal can be modulated by changing the surrounding perovskite matrix through their intimate structural coupling. Interestingly, this controllability is more strongly correlated to the competition of bonding strength between the matrices and the CFO mesocrystals rather than the lattice mismatch. When embedded in a matrix with a higher melting point or stiffness, the CFO mesocrystal experiences higher out-of-plane compressive strain and shows a stronger magnetic anisotropy as well as cation site-exchange. Our study suggests a new pathway to tailor the functionalities of mesocrystals.

[1]  Moon-Ho Jo,et al.  Polarized Raman scattering of multiferroic BiFeO3 epitaxial films with rhombohedral R3c symmetry , 2006 .

[2]  Y. Chu,et al.  Misorientation control and functionality design of nanopillars in self-assembled perovskite-spinel heteroepitaxial nanostructures. , 2011, ACS nano.

[3]  R. Ramesh,et al.  Controlling self-assembled perovskite-spinel nanostructures. , 2006, Nano letters.

[4]  Markus Niederberger,et al.  Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. , 2006, Physical chemistry chemical physics : PCCP.

[5]  Y. Chu,et al.  Strain modulated optical properties in BiFeO3 thin films , 2013 .

[6]  N. Maffei,et al.  Specific heat study and Landau analysis of the phase transition in PbTiO3 single crystals , 2005 .

[7]  C. Rinaldi,et al.  Synthesis and magnetic characterization of cobalt-substituted ferrite (CoxFe3−xO4) nanoparticles , 2007 .

[8]  Y. Chueh,et al.  Epitaxial photostriction-magnetostriction coupled self-assembled nanostructures. , 2012, ACS nano.

[9]  E. Tarte,et al.  Residual stress analysis of all perovskite oxide cantilevers , 2011 .

[10]  Arunava Gupta,et al.  MonitoringB-site ordering and strain relaxation in NiFe2O4epitaxial films by polarized Raman spectroscopy , 2011 .

[11]  A. Williams,et al.  Anisotropy and Magnetostriction of Some Ferrites , 1955 .

[12]  F. Chang,et al.  Stress-mediated magnetic anisotropy and magnetoelastic coupling in epitaxial multiferroic PbTiO3-CoFe2O4 nanostructures , 2013 .

[13]  T. Tachikawa,et al.  Metal oxide mesocrystals with tailored structures and properties for energy conversion and storage applications , 2014 .

[14]  L. Tjeng,et al.  Local electronic structure and magnetic properties of LaMn0.5Co0.5O3 studied by x-ray absorption and magnetic circular dichroism spectroscopy dichroism spectroscopy , 2007, 0709.3243.

[15]  Huang-Wei Chang,et al.  Structural and nanomechanical properties of BiFeO3 thin films deposited by radio frequency magnetron sputtering , 2013, Nanoscale Research Letters.

[16]  D. Tenne,et al.  Probing Nanoscale Ferroelectricity by Ultraviolet Raman Spectroscopy , 2006, Science.

[17]  A. Huntz,et al.  Mechanical behaviour of ferroelectric films on perovskite substrate , 2004 .

[18]  C. Kisielowski,et al.  Structure and interface chemistry of perovskite-spinel nanocomposite thin films , 2006 .

[19]  Gopalan Srinivasan,et al.  Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides , 2001 .

[20]  R. Ramesh,et al.  Heteroepitaxially enhanced magnetic anisotropy in BaTiO3–CoFe2O4 nanostructures , 2007 .

[21]  Q. Jia,et al.  Interfacial coupling in heteroepitaxial vertically aligned nanocomposite thin films: From lateral to vertical control , 2014 .

[22]  Tetsushi Matsuda,et al.  Thermophysical properties of SrHfO3 and SrRuO3 , 2004 .

[23]  Y. Chin,et al.  Magnetic mesocrystal-assisted magnetoresistance in manganite. , 2014, Nano letters.

[24]  F. Meldrum,et al.  A critical analysis of calcium carbonate mesocrystals , 2014, Nature Communications.

[25]  Zhiwei Hu,et al.  Strong magnetic enhancement in self-assembled multiferroic-ferrimagnetic nanostructures. , 2013, Nanoscale.

[26]  Helmut Cölfen,et al.  Mesocrystals—Ordered Nanoparticle Superstructures , 2010, Advanced materials.

[27]  Markus Antonietti,et al.  Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. , 2005, Angewandte Chemie.

[28]  S. S. Kim,et al.  Thickness effect of ferroelectric domain switching in epitaxial PbTiO3 thin films on Pt(001)/MgO(001) , 2004 .

[29]  S. Saxena,et al.  High-pressure x-ray diffraction and Raman spectroscopic studies of the tetragonal spinel CoFe 2 O 4 , 2003 .

[30]  T. Zhao,et al.  Nanoscale x-ray magnetic circular dichroism probing of electric-field-induced magnetic switching in multiferroic nanostructures , 2007 .

[31]  Satishchandra Ogale,et al.  Multiferroic BaTiO 3 -CoFe 2 O 4 Nanostructures , 2004 .

[32]  Y. Cho,et al.  Electronic Structure of Vertically Aligned Mn-Doped CoFe2O4 Nanowires and Their Application as Humidity Sensors and Photodetectors , 2009 .

[33]  P. Yeh,et al.  Effect of geometry on the magnetic properties of CoFe2O4–PbTiO3 multiferroic composites , 2013 .

[34]  Strain analysis of multiferroic BiFeO3-CoFe2O4 nanostructures by Raman scattering , 2011, 1107.4682.

[35]  J. MacManus‐Driscoll Self‐Assembled Heteroepitaxial Oxide Nanocomposite Thin Film Structures: Designing Interface‐Induced Functionality in Electronic Materials , 2010 .

[36]  A. Mukhopadhyay,et al.  Nanoindentation behaviour of nano BiFeO3 , 2012 .

[37]  R. Ramesh,et al.  Self-assembled vertical heteroepitaxial nanostructures: from growth to functionalities , 2014 .

[38]  R Ramesh,et al.  Multiferroic BaTiO3-CoFe2O4 Nanostructures , 2004, Science.

[39]  E. Negusse,et al.  Magnetic Structure of Fe-doped CoFe(2)O(4) Probed by X-ray Magnetic Spectroscopies , 2011 .

[40]  A. Roytburd,et al.  Design of Self‐Assembled Multiferroic Nanostructures in Epitaxial Films , 2006 .

[41]  D. Ruch,et al.  Correlation between structural and mechanical properties of PbTiO3 thin films grown by pulsed-laser deposition , 2006 .

[42]  C. Zhong,et al.  Electric field induced magnetization of multiferroic horizontal heterostructures , 2010 .