A Regularity Criterion in Weak Spaces to Boussinesq Equations

In this paper, we study the regularity of weak solutions to the incompressible Boussinesq equations in R 3 × ( 0 , T ) . The main goal is to establish the regularity criterion in terms of one velocity component and the gradient of temperature in Lorentz spaces.

[1]  Yong Zhou,et al.  A new regularity criterion for weak solutions to the Navier–Stokes equations , 2005 .

[2]  N. Ishimura,et al.  REMARKS ON THE BLOW-UP CRITERION FOR THE 3-D BOUSSINESQ EQUATIONS , 1999 .

[3]  Z. Ye A logarithmically improved regularity criterion of smooth solutions for the 3D Boussinesq equations , 2016 .

[4]  Fuyi Xu,et al.  Regularity Criteria of the 3D Boussinesq Equations in the Morrey-Campanato Space , 2012 .

[5]  Cheng He Regularity for solutions to the Navier-Stokes equations with one velocity component regular , 2002 .

[6]  H. Triebel Theory Of Function Spaces , 1983 .

[7]  Yuming Qin,et al.  Blow‐up criteria of smooth solutions to the 3D Boussinesq equations , 2012 .

[8]  J. Neustupa,et al.  REGULARITY OF A SUITABLE WEAK SOLUTION TO THE NAVIER-STOKES EQUATIONS AS A CONSEQUENCE OF REGULARITY OF ONE VELOCITY COMPONENT , 2002 .

[9]  Sadek Gala,et al.  A remark on the regularity criterion of Boussinesq equations with zero heat conductivity , 2014, Appl. Math. Lett..

[10]  Dongho Chae,et al.  Local existence and blow-up criterion for the Boussinesq equations , 1997, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[11]  Milan Pokorný,et al.  On Anisotropic Regularity Criteria for the Solutions to 3D Navier–Stokes Equations , 2011 .

[12]  D. Fang,et al.  The regularity criterion for 3D Navier-Stokes Equations , 2012, 1205.1255.

[13]  Dongho Chae,et al.  Local existence and blow-up criterion of Hölder continuous solutions of the Boussinesq equations , 1999, Nagoya Mathematical Journal.

[14]  Yong Zhou,et al.  A note on regularity criterion for the 3D Boussinesq system with partial viscosity , 2009, Appl. Math. Lett..

[15]  Jong Yeoul Park,et al.  Existence results for second-order neutral functional differential and integrodifferential inclusions in Banach spaces. , 2002 .

[16]  Igor Kukavica,et al.  One component regularity for the Navier–Stokes equations , 2006 .

[17]  Richard O’Neil,et al.  Convolution operators and $L(p,q)$ spaces , 1963 .

[18]  Edriss S. Titi,et al.  Global Regularity Criterion for the 3D Navier–Stokes Equations Involving One Entry of the Velocity Gradient Tensor , 2010, 1005.4463.

[19]  Joseph Kupka,et al.  $L_{p,q}$ spaces , 1980 .

[20]  A generalized regularity criterion for 3D Navier–Stokes equations in terms of one velocity component , 2016 .

[21]  Yong Zhou,et al.  On the regularity of the solutions of the Navier–Stokes equations via one velocity component , 2010 .

[22]  J. Bona,et al.  Comparisons between the BBM equation and a Boussinesq system , 2006, Advances in Differential Equations.

[23]  Remarks on regularity criteria for the Navier–Stokes equations via one velocity component , 2014 .

[24]  Z. Ye Remarks on the regularity criterion to the 3D Navier-Stokes equations via one velocity component , 2016 .

[25]  Zhaoyin Xiang The regularity criterion of the weak solution to the 3D viscous Boussinesq equations in Besov spaces , 2011 .

[26]  S. Gala On the regularity criterion of strong solutions to the 3D Boussinesq equations , 2011 .

[27]  Jishan Fan,et al.  Regularity criteria for the 3D density-dependent Boussinesq equations , 2009 .

[28]  S. Gala,et al.  Logarithmically improved regularity criterion for the Boussinesq equations in Besov spaces with negative indices , 2016 .

[29]  Z. Ye Blow-up criterion of smooth solutions for the Boussinesq equations , 2014 .

[30]  Z. Ye Remarks on the regularity criterion to the Navier–Stokes equations via the gradient of one velocity component , 2016 .

[31]  S. Gala,et al.  On the regularity criteria for the 3D magnetohydrodynamic equations via two components in terms of BMO space , 2014 .

[32]  D. Fang,et al.  Regularity criterion for 3D Navier-Stokes Equations in Besov spaces , 2012, 1210.3857.

[33]  Edriss S. Titi,et al.  Regularity Criteria for the Three-dimensional Navier-Stokes Equations , 2008 .

[34]  A regularity criterion for the tridimensional Navier–Stokes equations in term of one velocity component , 2014 .

[35]  Z. Yao,et al.  A blow-up criterion for 3D Boussinesq equations in Besov spaces , 2010 .