제빵 굽기 공정의 신경회로망 모형화

제빵 공정 중의 굽기 공정을 대상으로 공정에 이용되는 오븐의 예측 제어를 위해 빵의 부피, 색깔, 빵의 온도 변화를 예측할 수 있는 모형을 개발하였다. 첫째, 모형 개발을 위해 필요한 데이터 획득을 위해 영상 처리 장치, K-type 열전쌍 온도 센서 등을 이용하여, 굽기 공정 중의 물리적 변화를 측정하였다. 빵의 상태 변화는 부피가 먼저 증가하고, 부피 증가가 멈춘 후에 색깔의 변화가 수반되었다. 표면 온도는 초기에 급격히 상승한 후에 완만한 상승으로 전환되었고, 내부 온도는 초기에 어느 정도 일정한 온도를 유지하다가, 중반에 급격한 상승을 나타내고, 이후에 다시 일정하게 유지되었다. 부피, 색과, 품온 간의 상호관계는 비선형적인 관계를 가진 것으로 판명되었다. 둘째, 빵의 부피, 색 변화를 예측하기 위해 MLP구조와 BP학습을 이용하여, 30초, 2분 이후의 부피 및 색 변화를 예측할 수 있는 모형과 부피, 색, 오븐 온도를 입력으로 품은 및 표면 온도를 예측할 수 있는 모형을 개발하였다. 개발된 모형의 예측 오차가 각각 4.62%, 7.38%, 1.09%로, 굽기 공정 중의 빵의 상태를 유의성 있게 예측할 수 있었다. 【Three quality factors of bread during baking process were measured to develop neural network models for bread baking process. Firstly, volume and browning changes during bread baking process were measured using image processing technique and temperature changes inside the bread during process were measured by K-type thermocouples. Relationships among them showed nonlinearity. Secondly, multilayer perception structure with error back propagation learning was used to construct neural network models. Three neural network models for volume, browning, and bread temperature were developed respectively. Developed models showed good performance with predictive error of 4.62% for volume and browning changes after 30 seconds, 7.38% for volume and browning changes after 2 minutes, and 1.09% for temperature change inside the bread respectively.】