Hierarchical Bayesian inference for the EEG inverse problem using realistic FE head models: Depth localization and source separation for focal primary currents

The estimation of the activity-related ion currents by measuring the induced electromagnetic fields at the head surface is a challenging and severely ill-posed inverse problem. This is especially true in the recovery of brain networks involving deep-lying sources by means of EEG/MEG recordings which is still a challenging task for any inverse method. Recently, hierarchical Bayesian modeling (HBM) emerged as a unifying framework for current density reconstruction (CDR) approaches comprising most established methods as well as offering promising new methods. Our work examines the performance of fully-Bayesian inference methods for HBM for source configurations consisting of few, focal sources when used with realistic, high-resolution finite element (FE) head models. The main foci of interest are the correct depth localization, a well-known source of systematic error of many CDR methods, and the separation of single sources in multiple-source scenarios. Both aspects are very important in the analysis of neurophysiological data and in clinical applications. For these tasks, HBM provides a promising framework and is able to improve upon established CDR methods such as minimum norm estimation (MNE) or sLORETA in many aspects. For challenging multiple-source scenarios where the established methods show crucial errors, promising results are attained. Additionally, we introduce Wasserstein distances as performance measures for the validation of inverse methods in complex source scenarios.

[1]  R. Pascual-Marqui Review of methods for solving the EEG inverse problem , 1999 .

[2]  Ernst Fernando Lopes Da Silva Niedermeyer,et al.  Electroencephalography, basic principles, clinical applications, and related fields , 1982 .

[3]  Karl J. Friston,et al.  MEG source localization under multiple constraints: An extended Bayesian framework , 2006, NeuroImage.

[4]  David P. Wipf,et al.  A unified Bayesian framework for MEG/EEG source imaging , 2009, NeuroImage.

[5]  P. Bruno,et al.  Referenced EEG and head volume conductor model: geometry and parametrical setting , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[6]  W. Hackbusch,et al.  Efficient Computation of Lead Field Bases and Influence Matrix for the FEM-based EEG and MEG Inverse Problem. Part I: Complexity Considerations , 2003 .

[7]  M. S. Hämäläinen,et al.  Quantification of the benefit from integrating MEG and EEG data in minimum ℓ2-norm estimation , 2008, NeuroImage.

[8]  Harald Köstler,et al.  Numerical Mathematics of the Subtraction Method for the Modeling of a Current Dipole in EEG Source Reconstruction Using Finite Element Head Models , 2007, SIAM J. Sci. Comput..

[9]  Dirk Husmeier Automatic Relevance Determination (ARD) , 1999 .

[10]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[11]  J. Haueisen,et al.  Influence of head models on EEG simulations and inverse source localizations , 2006, Biomedical engineering online.

[12]  K. Blinowska,et al.  Multichannel matching pursuit and EEG inverse solutions , 2005, Journal of Neuroscience Methods.

[13]  Karl J. Friston,et al.  Multiple sparse priors for the M/EEG inverse problem , 2008, NeuroImage.

[14]  Sergey M. Plis,et al.  Bayesian brain source imaging based on combined MEG/EEG and fMRI using MCMC , 2008, NeuroImage.

[15]  Tony F. Chan,et al.  A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model , 2002, International Journal of Computer Vision.

[16]  J.C. Mosher,et al.  Multiple dipole modeling and localization from spatio-temporal MEG data , 1992, IEEE Transactions on Biomedical Engineering.

[17]  Bernd Lütkenhöner,et al.  Brain stem auditory evoked fields in response to clicks , 2000, Neuroreport.

[18]  E. Pauli,et al.  Clinical prediction of postoperative seizure control: structural, functional findings and disease histories , 2008, Journal of Neurology, Neurosurgery, and Psychiatry.

[19]  Daniela Calvetti,et al.  Hypermodels in the Bayesian imaging framework , 2008 .

[20]  Karl J. Friston,et al.  A Parametric Empirical Bayesian framework for fMRI‐constrained MEG/EEG source reconstruction , 2010, Human brain mapping.

[21]  Tohru Ozaki,et al.  A solution to the dynamical inverse problem of EEG generation using spatiotemporal Kalman filtering , 2004, NeuroImage.

[22]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[23]  Harald Köstler,et al.  Numerical approaches for dipole modeling in finite element method based source analysis , 2007 .

[24]  Carsten H. Wolters,et al.  A full subtraction approach for finite element method based source analysis using constrained Delaunay tetrahedralisation , 2009, NeuroImage.

[25]  H. Spekreijse,et al.  Mathematical dipoles are adequate to describe realistic generators of human brain activity , 1988, IEEE Transactions on Biomedical Engineering.

[26]  R. Ilmoniemi,et al.  Estimates of visually evoked cortical currents. , 1992, Electroencephalography and clinical neurophysiology.

[27]  John S Ebersole,et al.  Combining MEG and EEG Source Modeling in Epilepsy Evaluations , 2010, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[28]  Karl J. Friston,et al.  Variational free energy and the Laplace approximation , 2007, NeuroImage.

[29]  C E Elger,et al.  Prognostic Significance of Ictal and Interictal Epileptiform Activity in Temporal Lobe Epilepsy , 1994, Epilepsia.

[30]  Harri Hakula,et al.  Conditionally Gaussian Hypermodels for Cerebral Source Localization , 2008, SIAM J. Imaging Sci..

[31]  Stefan Rampp,et al.  Magnetoencephalography in presurgical epilepsy diagnosis , 2007, Expert review of medical devices.

[32]  J. Fermaglich Electric Fields of the Brain: The Neurophysics of EEG , 1982 .

[33]  L. Kantorovich On the Translocation of Masses , 2006 .

[34]  Achim Klenke,et al.  Probability theory - a comprehensive course , 2008, Universitext.

[35]  Karl J. Friston,et al.  An empirical Bayesian solution to the source reconstruction problem in EEG , 2005, NeuroImage.

[36]  Seppo P. Ahlfors,et al.  Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates , 2006, NeuroImage.

[37]  Polina Golland,et al.  A distributed spatio-temporal EEG/MEG inverse solver , 2009, NeuroImage.

[38]  Scott Makeig,et al.  Neuroelectromagnetic Forward Head Modeling Toolbox , 2010, Journal of Neuroscience Methods.

[39]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[40]  F. Tony,et al.  A multiphase level set framework for image segmentation using theMumford and Shah modelLuminita , 2001 .

[41]  A. Ioannides,et al.  Continuous probabilistic solutions to the biomagnetic inverse problem , 1990 .

[42]  Paul Ferrari,et al.  Preoperative magnetic source imaging for brain tumor surgery: a quantitative comparison with intraoperative sensory and motor mapping. , 2003, Journal of neurosurgery.

[43]  関原 謙介,et al.  Adaptive Spatial Filters for Electromagnetic Brain Imaging , 2008 .

[44]  J. Sarvas Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. , 1987, Physics in medicine and biology.

[45]  Robert T. Knight,et al.  Five-dimensional neuroimaging: Localization of the time–frequency dynamics of cortical activity , 2008, NeuroImage.

[46]  M. Fuchs,et al.  Linear and nonlinear current density reconstructions. , 1999, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[47]  L. Kaufman,et al.  Magnetic source images determined by a lead-field analysis: the unique minimum-norm least-squares estimation , 1992, IEEE Transactions on Biomedical Engineering.

[48]  Anders M. Dale,et al.  Improved Localization of Cortical Activity By Combining EEG and MEG with MRI Cortical Surface Reconstruction , 2002 .

[49]  Karl J. Friston,et al.  Selecting forward models for MEG source-reconstruction using model-evidence , 2009, NeuroImage.

[50]  R. Greenblatt,et al.  Local linear estimators for the bioelectromagnetic inverse problem , 2005, IEEE Transactions on Signal Processing.

[51]  Nelson J. Trujillo-Barreto,et al.  Bayesian model averaging in EEG/MEG imaging , 2004, NeuroImage.

[52]  Rafal Nowak,et al.  Simultaneous Magnetoencephalography and Intracranial EEG Registration: Technical and Clinical Aspects , 2008, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[53]  Jens Haueisen,et al.  Functional Brain Imaging with M/EEG Using Structured Sparsity in Time-Frequency Dictionaries , 2011, IPMI.

[54]  M. Scherg,et al.  Somatosensory evoked potentials and magnetic fields: separation of multiple source activities. , 1993, Physiological measurement.

[55]  R. Oostenveld,et al.  Validating the boundary element method for forward and inverse EEG computations in the presence of a hole in the skull , 2002, Human brain mapping.

[56]  C H Wolters,et al.  Accuracy and run-time comparison for different potential approaches and iterative solvers in finite element method based EEG source analysis. , 2009, Applied numerical mathematics : transactions of IMACS.

[57]  A. Walker Electroencephalography, Basic Principles, Clinical Applications and Related Fields , 1982 .

[58]  H. Duvernoy,et al.  The Human Hippocampus: Functional Anatomy, Vascularization and Serial Sections with MRI , 1997 .

[59]  Simon K. Warfield,et al.  EEG source analysis of epileptiform activity using a 1 mm anisotropic hexahedra finite element head model , 2009, NeuroImage.

[60]  R D Pascual-Marqui,et al.  Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. , 2002, Methods and findings in experimental and clinical pharmacology.

[61]  Lachaux Jean-Philippe Insights from Simultaneous Recording of MEG and Intracranial EEG , 2010 .

[62]  Lutz Trahms,et al.  Recent advances in modeling and analysis of bioelectric and biomagnetic sources , 2010, Biomedizinische Technik. Biomedical engineering.

[63]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[64]  Masa-aki Sato,et al.  Hierarchical Bayesian estimation for MEG inverse problem , 2004, NeuroImage.

[65]  Moritz Dannhauer,et al.  Modeling of the human skull in EEG source analysis , 2011, Human brain mapping.

[66]  Sylvain Baillet,et al.  A Bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem , 1997, IEEE Transactions on Biomedical Engineering.

[67]  J. Haueisen,et al.  The Influence of Brain Tissue Anisotropy on Human EEG and MEG , 2002, NeuroImage.

[68]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[69]  L. Ambrosio Gradient Flows in Metric Spaces and in the Spaces of Probability Measures, and Applications to Fokker-Planck Equations with Respect to Log-Concave Measures , 2008 .

[70]  G. Aubert,et al.  Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations (Applied Mathematical Sciences) , 2006 .

[71]  Bart Vanrumste,et al.  Ictal Source Localization in Presurgical Patients With Refractory Epilepsy , 2002, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[72]  N. G. Gencer,et al.  Differential characterization of neural sources with the bimodal truncated SVD pseudo-inverse for EEG and MEG measurements , 1998, IEEE Transactions on Biomedical Engineering.

[73]  Jouko Lampinen,et al.  Automatic relevance determination based hierarchical Bayesian MEG inversion in practice , 2007, NeuroImage.

[74]  Leonid Zhukov,et al.  Lead-field Bases for Electroencephalography Source Imaging , 2000, Annals of Biomedical Engineering.

[75]  W. Sutherling,et al.  Conductivities of Three-Layer Live Human Skull , 2004, Brain Topography.

[76]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[77]  M Wagner,et al.  Inverse localization of electric dipole current sources in finite element models of the human head. , 1997, Electroencephalography and clinical neurophysiology.

[78]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[79]  Nelson J. Trujillo-Barreto,et al.  Bayesian M/EEG source reconstruction with spatio-temporal priors , 2008, NeuroImage.

[80]  M. Fuchs,et al.  An improved boundary element method for realistic volume-conductor modeling , 1998, IEEE Transactions on Biomedical Engineering.

[81]  M. Peters,et al.  Volume conduction effects in EEG and MEG. , 1998, Electroencephalography and clinical neurophysiology.

[82]  J. Ebersole,et al.  Intracranial EEG Substrates of Scalp EEG Interictal Spikes , 2005, Epilepsia.

[83]  Jens Haueisen,et al.  Dipole models for the EEG and MEG , 2002, IEEE Transactions on Biomedical Engineering.

[84]  Olivier D. Faugeras,et al.  A common formalism for the Integral formulations of the forward EEG problem , 2005, IEEE Transactions on Medical Imaging.

[85]  Paolo Inchingolo,et al.  Head model extension for the study of bioelectric phenomena. , 2003, Biomedical sciences instrumentation.

[86]  Carsten H. Wolters,et al.  Efficient algorithms for the regularization of dynamic inverse problems: II. Applications , 2002 .

[87]  Théodore Papadopoulo,et al.  A trilinear immersed FEM for solving the EEG forward problem , 2010 .

[88]  H. Jokeit,et al.  EEG predicts surgical outcome in lesional frontal lobe epilepsy , 2000, Neurology.

[89]  Kensuke Sekihara,et al.  Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction , 2005, NeuroImage.

[90]  Daniela Calvetti,et al.  Introduction to Bayesian Scientific Computing: Ten Lectures on Subjective Computing , 2007 .

[91]  Daniela Calvetti,et al.  Recovery of shapes: hypermodels and Bayesian learning , 2008 .

[92]  R. Ilmoniemi,et al.  Interpreting magnetic fields of the brain: minimum norm estimates , 2006, Medical and Biological Engineering and Computing.

[93]  Daniela Calvetti,et al.  A Gaussian hypermodel to recover blocky objects , 2007 .

[94]  M Hoke,et al.  Tonotopic organization of the auditory cortex: pitch versus frequency representation. , 1989, Science.

[95]  Karl J. Friston,et al.  MEG and EEG data fusion: Simultaneous localisation of face-evoked responses , 2009, NeuroImage.

[96]  Karl J. Friston,et al.  Dynamic causal modeling for EEG and MEG , 2009, Human brain mapping.

[97]  Hans Hallez,et al.  Incorporation of anisotropic conductivities in EEG source analysis , 2008 .

[98]  J. Mäkelä,et al.  Sources of auditory brainstem responses revisited: Contribution by magnetoencephalography , 2009, Human brain mapping.

[99]  Gjlles Aubert,et al.  Mathematical problems in image processing , 2001 .

[100]  M. Scherg,et al.  Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model. , 1985, Electroencephalography and clinical neurophysiology.

[101]  Jouko Lampinen,et al.  Hierarchical Bayesian estimates of distributed MEG sources: Theoretical aspects and comparison of variational and MCMC methods , 2007, NeuroImage.

[102]  T. Bliss,et al.  The Hippocampus Book , 2006 .

[103]  G Scheler,et al.  Magnetic brain source imaging of focal epileptic activity: a synopsis of 455 cases. , 2003, Brain : a journal of neurology.

[104]  Manfred Fuchs,et al.  Evaluation of sLORETA in the Presence of Noise and Multiple Sources , 2003, Brain Topography.

[105]  Rolando Grave de Peralta Menendez,et al.  The Neuroelectromagnetic Inverse Problem and the Zero Dipole Localization Error , 2009, Comput. Intell. Neurosci..