Average State Complexity of Operations on Unary Automata

Define the complexity of a regular language as the number of states of its minimal automaton. Let A (respectively A') be an n-state (resp. n'-state) deterministic and connected uneiry automaton. Our main results can be summarized ais follows: 1. The probability that A is minimal tends toweird 1/2 when n tends toward infinity, 2. The average complexity of L(A) is equivalent to n, 3. The average complexity of L(A) ∩ L(A') is equivalent to 3c(3)/2π2nn', where c is the Riemann "zeta"-function. 4. The average complexity of L(A)* is bounded by a constrant, 5. If n ≤ n' ≤ P(n), for some polynomial P, the average complexity of L(A)L(A') is bounded by a constant (depending on P). Remark that results 3, 4 and 5 differ perceptibly from the corresponding worst case complexities, which are nn' for intersection, (n - 1)2 + 1 for star and nn' for concatenation product.

[1]  Donald E. Knuth,et al.  The art of computer programming: V.1.: Fundamental algorithms , 1997 .

[2]  Gérald Tenenbaum,et al.  Introduction à la théorie analytique et probabiliste des nombres , 1990 .

[3]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[4]  Jean-Paul Allouche,et al.  Transcendence of Formal Power Series with Rational Coefficients , 1999, Theor. Comput. Sci..

[5]  Thomas Sudkamp,et al.  Languages and Machines , 1988 .

[6]  J. Pintz,et al.  The Difference Between Consecutive Primes , 1996 .

[7]  A. Ingham The distribution of prime numbers , 1972 .

[8]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[9]  M. V. Wilkes,et al.  The Art of Computer Programming, Volume 3, Sorting and Searching , 1974 .

[10]  Sheng Yu,et al.  The State Complexities of Some Basic Operations on Regular Languages , 1994, Theor. Comput. Sci..

[11]  Donald E. Knuth,et al.  The Art of Computer Programming, Volume I: Fundamental Algorithms, 2nd Edition , 1997 .

[12]  Philippe Flajolet,et al.  An introduction to the analysis of algorithms , 1995 .

[13]  E. J. Scourfield THE DISTRIBUTION OF PRIME NUMBERS; LARGE SIEVES AND ZERO‐DENSITY THEOREMS , 1974 .

[14]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[15]  H. Davenport Multiplicative Number Theory , 1967 .

[16]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[17]  守屋 悦朗,et al.  J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .

[18]  Donald E. Knuth,et al.  The Art of Computer Programming: Volume 3: Sorting and Searching , 1998 .

[19]  Donald Ervin Knuth,et al.  The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .