Synthesis of Digital Circuits with Genetic Algorithms: A Fractional-Order Approach

This paper analyses the performance of a genetic algorithm using a new concept, namely a fractional-order dynamic fitness function, for the synthesis of combinational logic circuits. The experiments reveal superior results in terms of speed and convergence to achieve a solution. Keywords— Circuit Design, Fractional-Order Systems, Genetic Algorithms, Logic Circuits.

[1]  Julian F. Miller,et al.  Multiple Valued Combinational Circuits Synthesized using Evolvable Hardware , 1998 .

[2]  J. Machado Analysis and design of fractional-order digital control systems , 1997 .

[3]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[4]  Jim Tørresen,et al.  A Divide-and-Conquer Approach to Evolvable Hardware , 1998, ICES.

[5]  Julian Francis Miller,et al.  Scalability problems of digital circuit evolution evolvability and efficient designs , 2000, Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware.

[6]  Ricardo Salem Zebulum,et al.  Evolutionary Electronics , 2001 .

[7]  Sushil J. Louis,et al.  Designer Genetic Algorithms: Genetic Algorithms in Structure Design , 1991, ICGA.

[8]  José António Tenreiro Machado,et al.  Evolutionary Design of Combinational Logic Circuits , 2004, J. Adv. Comput. Intell. Intell. Informatics.

[9]  Hajime Kita,et al.  Optimization of noisy fitness functions by means of genetic algorithms using history of search with test of estimation , 2000, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[10]  José António Tenreiro Machado,et al.  Synthesis of Logic Circuits Using Fractional-Order Dynamic Fitness Functions , 2007, International Conference on Computational Intelligence.

[11]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .