A Levenberg–Marquardt method based on Sobolev gradients
暂无分享,去创建一个
[1] Robert J. Renka,et al. Minimal Surfaces and Sobolev Gradients , 1995, SIAM J. Sci. Comput..
[2] Alfonso Castro,et al. An inverse function theorem via continuous Newton’s method , 2001 .
[3] John William Neuberger,et al. Potential theory and applications in a constructive method for finding critical points of Ginzburg-Landau type equations , 2008 .
[4] J. Moser. A rapidly convergent iteration method and non-linear partial differential equations - I , 1966 .
[5] Robert J. Renka,et al. Minimization of the Ginzburg-Landau energy functional by a Sobolev gradient trust-region method , 2013, Appl. Math. Comput..
[6] J. W. Neuberger. The Continuous Newton's Method, Inverse Functions, and Nash-Moser , 2007, Am. Math. Mon..
[7] Jürgen Moser,et al. A rapidly convergent iteration method and non-linear differential equations = II , 1966 .
[8] Sahbi Boussandel. Global existence and maximal regularity of solutions of gradient systems , 2011 .
[9] Robert J. Renka,et al. Nonlinear least squares and Sobolev gradients , 2013 .
[10] K. Deimling. Fixed Point Theory , 2008 .
[11] John William Neuberger. Continuous Newton’s Method , 2010 .
[12] István Faragó,et al. Preconditioning operators and Sobolevgradients for nonlinear elliptic problems , 2005 .
[13] John William Neuberger,et al. Sobolev gradients and differential equations , 1997 .
[14] Anos Kar,et al. VARIABLE PRECONDITIONING VIA QUASI-NEWTON METHODS FOR NONLINEAR PROBLEMS IN HILBERT SPACE ∗ , 2003 .
[15] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[16] István Faragó,et al. Variable Preconditioning via Quasi-Newton Methods for Nonlinear Problems in Hilbert Space , 2003, SIAM J. Numer. Anal..
[17] ftp ejde.math.txstate.edu (login: ftp) NEWTON’S METHOD IN THE CONTEXT OF GRADIENTS , 2022 .
[18] G. Burton. Sobolev Spaces , 2013 .