A Levenberg–Marquardt method based on Sobolev gradients

Abstract We extend the theory of Sobolev gradients to include variable metric methods, such as Newton’s method and the Levenberg–Marquardt method, as gradient descent iterations associated with stepwise variable inner products. In particular, we obtain existence, uniqueness, and asymptotic convergence results for a gradient flow based on a variable inner product.

[1]  Robert J. Renka,et al.  Minimal Surfaces and Sobolev Gradients , 1995, SIAM J. Sci. Comput..

[2]  Alfonso Castro,et al.  An inverse function theorem via continuous Newton’s method , 2001 .

[3]  John William Neuberger,et al.  Potential theory and applications in a constructive method for finding critical points of Ginzburg-Landau type equations , 2008 .

[4]  J. Moser A rapidly convergent iteration method and non-linear partial differential equations - I , 1966 .

[5]  Robert J. Renka,et al.  Minimization of the Ginzburg-Landau energy functional by a Sobolev gradient trust-region method , 2013, Appl. Math. Comput..

[6]  J. W. Neuberger The Continuous Newton's Method, Inverse Functions, and Nash-Moser , 2007, Am. Math. Mon..

[7]  Jürgen Moser,et al.  A rapidly convergent iteration method and non-linear differential equations = II , 1966 .

[8]  Sahbi Boussandel Global existence and maximal regularity of solutions of gradient systems , 2011 .

[9]  Robert J. Renka,et al.  Nonlinear least squares and Sobolev gradients , 2013 .

[10]  K. Deimling Fixed Point Theory , 2008 .

[11]  John William Neuberger Continuous Newton’s Method , 2010 .

[12]  István Faragó,et al.  Preconditioning operators and Sobolevgradients for nonlinear elliptic problems , 2005 .

[13]  John William Neuberger,et al.  Sobolev gradients and differential equations , 1997 .

[14]  Anos Kar,et al.  VARIABLE PRECONDITIONING VIA QUASI-NEWTON METHODS FOR NONLINEAR PROBLEMS IN HILBERT SPACE ∗ , 2003 .

[15]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[16]  István Faragó,et al.  Variable Preconditioning via Quasi-Newton Methods for Nonlinear Problems in Hilbert Space , 2003, SIAM J. Numer. Anal..

[17]  ftp ejde.math.txstate.edu (login: ftp) NEWTON’S METHOD IN THE CONTEXT OF GRADIENTS , 2022 .

[18]  G. Burton Sobolev Spaces , 2013 .