Byzantine Approximate Agreement on Graphs

Consider a distributed system with $n$ processors out of which $f$ can be Byzantine faulty. In the approximate agreement task, each processor $i$ receives an input value $x_i$ and has to decide on an output value $y_i$ such that - the output values are in the convex hull of the non-faulty processors' input values, - the output values are within distance $d$ of each other. Classically, the values are assumed to be from an $m$-dimensional Euclidean space, where $m \ge 1$. In this work, we study the task in a discrete setting, where input values with some structure expressible as a graph. Namely, the input values are vertices of a finite graph $G$ and the goal is to output vertices that are within distance $d$ of each other in $G$, but still remain in the graph-induced convex hull of the input values. For $d=0$, the task reduces to consensus and cannot be solved with a deterministic algorithm in an asynchronous system even with a single crash fault. For any $d \ge 1$, we show that the task is solvable in asynchronous systems when $G$ is chordal and $n > (\omega+1)f$, where $\omega$ is the clique number of~$G$. In addition, we give the first Byzantine-tolerant algorithm for a variant of lattice agreement. For synchronous systems, we show tight resilience bounds for the exact variants of these and related tasks over a large class of combinatorial structures.

[1]  Ignacio M. Pelayo,et al.  Geodesic Convexity in Graphs , 2013 .

[2]  Pierre Duchet,et al.  Convex sets in graphs, II. Minimal path convexity , 1987, J. Comb. Theory B.

[3]  Ophir Rachman,et al.  Atomic snapshots using lattice agreement , 1995, Distributed Computing.

[4]  Jennifer L. Welch,et al.  Self-Stabilizing Clock Synchronization in the Presence of ByzantineFaults ( Preliminary Version ) Shlomi Dolevy , 1995 .

[5]  Maurice Herlihy,et al.  Unifying synchronous and asynchronous message-passing models , 1998, PODC '98.

[6]  Pierre Duchet Convexity in combinatorial structures , 1987 .

[7]  Nancy A. Lynch,et al.  A new fault-tolerant algorithm for clock synchronization , 1984, PODC '84.

[8]  Maurice Herlihy,et al.  Multidimensional agreement in Byzantine systems , 2014, Distributed Computing.

[9]  Brenda L. Dietrich,et al.  Matroids and antimatroids - a survey , 1989, Discret. Math..

[10]  Petr Kuznetsov,et al.  N-Consensus is the Second Strongest Object for N+1 Processes , 2007, OPODIS.

[11]  Christoph Lenzen,et al.  Self-Stabilising Byzantine Clock Synchronisation Is Almost as Easy as Consensus , 2019, J. ACM.

[12]  Martin Farber,et al.  On local convexity in graphs , 1987, Discret. Math..

[13]  Sam Toueg,et al.  Simulating authenticated broadcasts to derive simple fault-tolerant algorithms , 1987, Distributed Computing.

[14]  Nitin H. Vaidya,et al.  Byzantine vector consensus in complete graphs , 2013, PODC '13.

[15]  Viktor Zamaraev,et al.  Brief Announcement: Distributed Minimum Vertex Coloring and Maximum Independent Set in Chordal Graphs , 2018, PODC.

[16]  Maurice Herlihy,et al.  Multidimensional approximate agreement in Byzantine asynchronous systems , 2013, STOC '13.

[17]  Paul H. Edelman,et al.  Combinatorial representation and convex dimension of convex geometries , 1988 .

[18]  M. Farber,et al.  Convexity in graphs and hypergraphs , 1986 .

[19]  Alan Fekete Asynchronous approximate agreement , 1987, PODC '87.

[20]  Leslie Lamport,et al.  Reaching Agreement in the Presence of Faults , 1980, JACM.

[21]  Alan Fekete,et al.  Asymptotically optimal algorithms for approximate agreement , 1986, PODC '86.

[22]  J. Eckhoff Helly, Radon, and Carathéodory Type Theorems , 1993 .

[23]  Zhiwei Xu,et al.  Classifying rendezvous tasks of arbitrary dimension , 2009, Theor. Comput. Sci..

[24]  Maurice Herlihy,et al.  Distributed Computing Through Combinatorial Topology , 2013 .

[25]  Danny Dolev,et al.  Optimal Resilience Asynchronous Approximate Agreement , 2004, OPODIS.

[26]  D. C. Kay,et al.  Axiomatic convexity theory and relationships between the Carathéodory, Helly, and Radon numbers , 1971 .

[27]  Nancy A. Lynch,et al.  Reaching approximate agreement in the presence of faults , 1986, JACM.

[28]  Nancy A. Lynch,et al.  Impossibility of distributed consensus with one faulty process , 1985, JACM.

[29]  Soma Chaudhuri,et al.  More Choices Allow More Faults: Set Consensus Problems in Totally Asynchronous Systems , 1993, Inf. Comput..

[30]  Christoph Lenzen,et al.  Fault-tolerant algorithms for tick-generation in asynchronous logic , 2011, SSS.

[31]  Robert E. Jamison,et al.  A Helly theorem for convexity in graphs , 1984, Discret. Math..

[32]  B. Peyton,et al.  An Introduction to Chordal Graphs and Clique Trees , 1993 .

[33]  Michael E. Saks,et al.  Communication Complexity and Combinatorial Lattice Theory , 1993, J. Comput. Syst. Sci..

[34]  Fanica Gavril,et al.  Algorithms for Minimum Coloring, Maximum Clique, Minimum Covering by Cliques, and Maximum Independent Set of a Chordal Graph , 1972, SIAM J. Comput..

[35]  Maurice Herlihy,et al.  A classification of wait-free loop agreement tasks , 2003, Theor. Comput. Sci..

[36]  Hagit Attiya,et al.  Adaptive and Efficient Algorithms for Lattice Agreement and Renaming , 2002, SIAM J. Comput..

[37]  Jayme Luiz Szwarcfiter,et al.  On the Carathéodory Number for the Convexity of Paths of Order Three , 2011, SIAM J. Discret. Math..

[38]  B. Korte,et al.  Greedoids - A Structural Framework for the Greedy Algorithm , 1984 .

[39]  Michael K. Reiter,et al.  On k-Set Consensus Problems in Asynchronous Systems , 2001, IEEE Trans. Parallel Distributed Syst..

[40]  Martin S. Andersen,et al.  Chordal Graphs and Semidefinite Optimization , 2015, Found. Trends Optim..

[41]  Ortrud R. Oellermann,et al.  Steiner Trees and Convex Geometries , 2009, SIAM J. Discret. Math..

[42]  D. Rose Triangulated graphs and the elimination process , 1970 .

[43]  J. Spinrad,et al.  Cycle-free partial orders and chordal comparability graphs , 1991 .

[44]  Paul Poncet,et al.  Convexities on ordered structures have their Krein--Milman theorem , 2013, 1301.0760.

[45]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[46]  Sriram K. Rajamani,et al.  Generalized lattice agreement , 2012, PODC '12.

[47]  Jayme Luiz Szwarcfiter,et al.  On the Carathéodory number of interval and graph convexities , 2013, Theor. Comput. Sci..

[48]  Christoph Lenzen,et al.  Near-optimal self-stabilising counting and firing squads , 2018, Distributed Computing.

[49]  Anne Berry,et al.  A simple algorithm to generate the minimal separators and the maximal cliques of a chordal graph , 2011, Inf. Process. Lett..

[50]  Paul H. Edelman,et al.  The theory of convex geometries , 1985 .

[51]  Vijay K. Garg,et al.  Lattice Agreement in Message Passing Systems , 2018, DISC.

[52]  G. Dirac On rigid circuit graphs , 1961 .