Development of semi-coarsening techniques

Departing from Mulder's semi-coarsening technique for first order PDEs, the notion of a grid of grids is introduced and a multi-level finite-volume technique for second order elliptic PDEs is developed. Various grid transfer operators are investigated, in combination with damped Jacobi relaxation. Convergence rates as they are predicted by Fourier local mode analysis are compared with practical measurements. The wide variety of grids at our disposal leads to the notion of coherent representations of a function on different grids. A sawtooth multi-level algorithm is proposed for the case of multiple semi-coarsening. A hierarchical set of basis functions for finite volumes on sparse grids is briefly discussed.

[1]  F. Wubs Notes on numerical fluid mechanics , 1985 .

[2]  P. M. deZeeuw,et al.  The convergence rate of multi-level algorithms applied to the convection-diffusion equation , 1982 .

[3]  A. Brandt Guide to multigrid development , 1982 .

[4]  W. Mulder A high-resolution Euler solver based on multigrid, semi-coarsening, and defective correction , 1992 .

[5]  P. Wesseling A robust and efficient multigrid method , 1982 .

[6]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[7]  Piet Hemker,et al.  On the order of prolongations and restrictions in multigrid procedures , 1990 .

[8]  W. Mulder A new multigrid approach to convection problems , 1989 .

[9]  Paul M. de Zeeuw Nonlinear Multigrid Applied to a One-Dimensional Stationary Semiconductor Model , 1992, SIAM J. Sci. Comput..

[10]  Naomi H. Naik,et al.  The improved robustness of multigrid elliptic solvers based on multiple semicoarsened grids , 1993 .

[11]  L. Schwartz Méthodes mathématiques pour les sciences physiques , 1961 .

[12]  Piet Hemker Remarks on sparse-grid finite-volume multigrid , 1996, Adv. Comput. Math..

[13]  P. Wesseling An Introduction to Multigrid Methods , 1992 .

[14]  P. M. de Zeeuw,et al.  The Convergence Rate of Multi-Level Algorithms Applied to the Convection-Diffusion Equation , 1985 .

[15]  E. Wagner International Series of Numerical Mathematics , 1963 .

[16]  Hans-Joachim Bungartz,et al.  Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimensionalen Poisson-Gleichung , 1992 .

[17]  Pieter W. Hemker Sparse-grid finite-volume multigrid for 3D-problems , 1995, Adv. Comput. Math..

[18]  A. Brandt Multi-Level Adaptive Techniques (MLAT) for Partial Differential Equations: Ideas and Software , 1977 .

[19]  U. Rüde,et al.  Multilevel, Extrapolation, and Sparse Grid Methods , 1994 .

[20]  Michael Griebel,et al.  A combination technique for the solution of sparse grid problems , 1990, Forschungsberichte, TU Munich.

[21]  Barry F. Smith,et al.  Using symmetrics and antisymmetrics to analyze a parallel multigrid algorithm: the elliptic boundary value problem case , 1989 .

[22]  P. M. De Zeeuw,et al.  Matrix-dependent prolongations and restrictions in a blackbox multigrid solver , 1990 .

[23]  John Rischard Rice,et al.  Mathematical Software , 1971 .

[24]  Wolfgang Hackbusch,et al.  FREQUENCY DECOMPOSITION MULTI-GRID METHODS FOR HYPERBOLIC PROBLEMS , 1989 .

[25]  Craig C. Douglas,et al.  A tupleware approach to domain decomposition methods , 1991 .