A phonon scattering assisted injection and extraction based terahertz quantum cascade laser

A lasing scheme for terahertz quantum cascade lasers, based on consecutive phonon-photon-phonon emissions per module, is proposed and experimentally demonstrated. The charge transport of the proposed structure is modeled using a rate equation formalism. An optimization code based on a genetic algorithm was developed to find a four-well design in the GaAs/Al0.25Ga0.75As material system that maximizes the product of population inversion and oscillator strength at 150 K. The fabricated devices using Au double-metal waveguides show lasing at 3.2 THz up to 138 K. The electrical characteristics display no sign of differential resistance drop at lasing threshold, which, in conjunction with the low optical power of the device, suggest—thanks to the rate equation model—a slow depopulation rate of the lower lasing state, a hypothesis confirmed by non-equilibrium Green’s function calculations.

[1]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[2]  Qi Jie Wang,et al.  High-Temperature Operation of Terahertz Quantum Cascade Laser Sources , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[3]  Andreas Wacker,et al.  Temperature dependence of the gain profile for terahertz quantum cascade lasers , 2007, 0711.2645.

[4]  J. Reno,et al.  Two-well terahertz quantum-cascade laser with direct intrawell-phonon depopulation , 2009 .

[5]  S. G. Razavipour,et al.  On metal contacts of terahertz quantum cascade lasers with a metal–metal waveguide , 2011 .

[6]  Paul Harrison,et al.  THE NATURE OF THE ELECTRON DISTRIBUTION FUNCTIONS IN QUANTUM CASCADE LASERS , 1999 .

[7]  Jacob B. Khurgin,et al.  Transport and gain in a quantum cascade laser: model and equivalent circuit , 2010 .

[8]  Paolo Lugli,et al.  Monte-Carlo-based spectral gain analysis for terahertz quantum cascade lasers , 2009 .

[9]  Marcella Giovannini,et al.  Small optical volume terahertz emitting microdisk quantum cascade lasers , 2007 .

[10]  Mattias Beck,et al.  Broadband THz lasing from a photon-phonon quantum cascade structure emitting from 2.8 to 4.1 THz. , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[11]  A. Wacker,et al.  Nonequilibrium Green’s function theory for transport and gain properties of quantum cascade structures , 2002 .

[12]  Sahand Hormoz,et al.  Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K. , 2008, Optics express.

[13]  J. Faist,et al.  Interface-roughness-induced broadening of intersubband electroluminescence in p-SiGe and n-GaInAs∕AlInAs quantum-cascade structures , 2005 .

[14]  Xavier Marcadet,et al.  Phase-resolved measurements of stimulated emission in a laser , 2007, Nature.

[15]  Q. Hu,et al.  Coherence of resonant-tunneling transport in terahertz quantum-cascade lasers , 2009, 0910.2959.

[16]  J. Faist,et al.  Strong confinement in terahertz intersubband lasers by intense magnetic fields , 2007 .

[17]  Qing Hu,et al.  A terahertz pulse emitter monolithically integrated with a quantum cascade laser , 2011 .

[18]  P. Vogl,et al.  Terahertz quantum cascade lasers based on type II InGaAs/GaAsSb/InP , 2010 .

[19]  Norihiko Sekine,et al.  Bloch gain in quantum cascade lasers , 2007 .

[20]  Vincenzo Spagnolo,et al.  Electron-lattice coupling in bound-to-continuum THz quantum-cascade lasers , 2006 .

[21]  O. Bonno,et al.  Modeling of electron–electron scattering in Monte Carlo simulation of quantum cascade lasers , 2005 .

[22]  K. M. Chung,et al.  Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling. , 2012, Optics express.

[23]  Andreas Wacker,et al.  Extraction-controlled quantum cascade lasers , 2010, 1007.5407.

[24]  Mauro F. Pereira,et al.  Nonequilibrium many body theory for quantum transport in terahertz quantum cascade lasers , 2009 .

[25]  B. Williams,et al.  1.9 THz Quantum-cascade Lasers with One-well Injector , 2006 .

[26]  M. Woerner,et al.  Quantum mechanical wavepacket transport in quantum cascade laser structures , 2006 .

[27]  J. Reno,et al.  A 1.8-THz quantum cascade laser operating significantly above the temperature of ℏω/kB , 2011 .

[28]  E. Dupont,et al.  Simplified density-matrix model applied to three-well terahertz quantum cascade lasers , 2010 .

[29]  Peter Vogl,et al.  Theory of nonequilibrium quantum transport and energy dissipation in terahertz quantum cascade lasers , 2009 .

[30]  P. Vogl,et al.  Nonequilibrium Green’s function calculation for four-level scheme terahertz quantum cascade lasers , 2009 .

[31]  Tadataka Edamura,et al.  Extremely high T0-values (∼450 K) of long-wavelength (∼15 μm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme , 2010 .

[32]  Andreas Wacker,et al.  Simulation of gain in quantum cascade lasers , 2009, OPTO.

[33]  G. Bastard,et al.  Free-carrier absorption in quantum cascade structures , 2011, 1112.1822.

[34]  R. Terazzi,et al.  Population inversion by resonant tunneling in quantum wells , 2007 .

[35]  Qing Hu,et al.  Analysis of transport properties of tetrahertz quantum cascade lasers , 2003 .

[36]  A. Davies,et al.  Limiting Factors to the Temperature Performance of THz Quantum Cascade Lasers Based on the Resonant-Phonon Depopulation Scheme , 2012, IEEE Transactions on Terahertz Science and Technology.

[37]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[38]  T. Unuma,et al.  Effects of interface roughness and phonon scattering on intersubband absorption linewidth in a GaAs quantum well , 2001 .

[39]  Qing Hu,et al.  186 K Operation of Terahertz Quantum-Cascade Lasers Based on a Diagonal Design , 2009 .

[40]  Gerhard Klimeck,et al.  Design concepts of terahertz quantum cascade lasers: Proposal for terahertz laser efficiency improvements , 2010 .

[41]  Qing Hu,et al.  Terahertz quantum-cascade laser at λ≈100 μm using metal waveguide for mode confinement , 2003 .

[42]  Hirofumi Kan,et al.  Indirect pump scheme for quantum cascade lasers: dynamics of electron-transport and very high T0-values. , 2008, Optics express.

[43]  Jerome Faist,et al.  Intersubband gain in a Bloch oscillator and Quantum cascade laser , 2003 .