Subpicotesla Diamond Magnetometry

Diamond defect centers are promising solid state magnetometers. Single centers allow for high spatial resolution field imaging but are limited in their magnetic field sensitivity to around 10 nT/Hz^(1/2) at room-temperature. Using defect center ensembles sensitivity can be scaled as N^(1/2) when N is the number of defects. In the present work we use an ensemble of 1e11 defect centers for sensing. By carefully eliminating all noise sources like laser intensity fluctuations, microwave amplitude and phase noise we achieve a photon shot noise limited field sensitivity of 0.9 pT/Hz^(1/2) at room-temperature with an effective sensor volume of 8.5e-4 mm^3. The smallest field we measured with our device is 100 fT. While this denotes the best diamond magnetometer sensitivity so far, further improvements using decoupling sequences and material optimization could lead to fT/Hz^(1/2) sensitivity.

[1]  Susumu Takahashi,et al.  High-frequency and high-field optically detected magnetic resonance of nitrogen-vacancy centers in diamond , 2015, 1502.03420.

[2]  Dirk Englund,et al.  Broadband magnetometry and temperature sensing with a light-trapping diamond waveguide , 2014, Nature Physics.

[3]  Halina Rubinsztein-Dunlop,et al.  Ultrasensitive Optomechanical Magnetometry , 2014, Advanced materials.

[4]  F. Dolde,et al.  Measuring the defect structure orientation of a single N V − ?> centre in diamond , 2014, 1402.4789.

[5]  D. Budker,et al.  Cavity-enhanced room-temperature magnetometry using absorption by nitrogen-vacancy centers in diamond. , 2014, Physical review letters.

[6]  L. Hollenberg,et al.  Electronic properties and metrology applications of the diamond NV- center under pressure. , 2013, Physical review letters.

[7]  W. Breiland Coherence in Multilevel Systems , 2013 .

[8]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[9]  D. Rugar,et al.  Nanoscale Nuclear Magnetic Resonance with a Nitrogen-Vacancy Spin Sensor , 2013, Science.

[10]  M. Huber,et al.  Scanning superconducting quantum interference device on a tip for magnetic imaging of nanoscale phenomena. , 2012, The Review of scientific instruments.

[11]  R. Hari,et al.  Magnetoencephalography: From SQUIDs to neuroscience Neuroimage 20th Anniversary Special Edition , 2012, NeuroImage.

[12]  M. Lukin,et al.  Enhanced solid-state multispin metrology using dynamical decoupling , 2012, 1201.5686.

[13]  D. D. Awschalom,et al.  Measurement and Control of Single Nitrogen-Vacancy Center Spins above 600 K , 2012, 1201.4420.

[14]  M. Lukin,et al.  Efficient photon detection from color centers in a diamond optical waveguide , 2012, 1201.0674.

[15]  Alex W Chin,et al.  Quantum metrology in non-Markovian environments. , 2011, Physical review letters.

[16]  W. Marsden I and J , 2012 .

[17]  J Wrachtrup,et al.  High-dynamic-range magnetometry with a single nuclear spin in diamond. , 2012, Nature nanotechnology.

[18]  R. S. Said,et al.  Nanoscale magnetometry using a single-spin system in diamond , 2011, 1103.4816.

[19]  Fedor Jelezko,et al.  Dynamical Decoupling of a single electron spin at room temperature , 2010, 1008.1953.

[20]  D. Budker,et al.  Broadband magnetometry by infrared-absorption detection of nitrogen-vacancy ensembles in diamond , 2010, 1009.4747.

[21]  R Hanson,et al.  Universal Dynamical Decoupling of a Single Solid-State Spin from a Spin Bath , 2010, Science.

[22]  Matthias Steiner,et al.  Single-Shot Readout of a Single Nuclear Spin , 2010, Science.

[23]  Pavel Ripka,et al.  Advances in Magnetic Field Sensors , 2010, IEEE Sensors Journal.

[24]  M. Markham,et al.  Quantum register based on coupled electron spins in a room-temperature solid. , 2010, 1004.5090.

[25]  F. Dolde,et al.  High sensitivity magnetic imaging using an array of spins in diamond. , 2010, The Review of scientific instruments.

[26]  Svenja Knappe,et al.  Femtotesla atomic magnetometry in a microfabricated vapor cell. , 2010, Optics express.

[27]  D Budker,et al.  Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. , 2009, Physical review letters.

[28]  A. C. Maloof,et al.  Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer , 2009, 0910.2206.

[29]  J. S. Hodges,et al.  Repetitive Readout of a Single Electronic Spin via Quantum Logic with Nuclear Spin Ancillae , 2009, Science.

[30]  Raymond G. Beausoleil,et al.  Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications , 2009 .

[31]  M. Markham,et al.  Ultralong spin coherence time in isotopically engineered diamond. , 2009, Nature materials.

[32]  D. Rugar,et al.  Nanoscale magnetic resonance imaging , 2009, Proceedings of the National Academy of Sciences.

[33]  Alfred Leitenstorfer,et al.  Nanoscale imaging magnetometry with diamond spins under ambient conditions , 2008, Nature.

[34]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.

[35]  M. Huber,et al.  Gradiometric micro-SQUID susceptometer for scanning measurements of mesoscopic samples. , 2008, The Review of scientific instruments.

[36]  Jacob M. Taylor,et al.  High-sensitivity diamond magnetometer with nanoscale resolution , 2008, 0805.1367.

[37]  Chris Gaffney,et al.  DETECTING TRENDS IN THE PREDICTION OF THE BURIED PAST : A REVIEW OF GEOPHYSICAL TECHNIQUES IN ARCHAEOLOGY , 2008 .

[38]  D. Drung,et al.  Highly Sensitive and Easy-to-Use SQUID Sensors , 2007, IEEE Transactions on Applied Superconductivity.

[39]  Jonathan A. Jones,et al.  Tackling systematic errors in quantum logic gates with composite rotations , 2002, quant-ph/0208092.

[40]  D. Rugar,et al.  Mechanical detection of magnetic resonance , 1992, Nature.

[41]  W. T. Welford,et al.  The Optics of Nonimaging Concentrators: Light and Solar Energy , 1978 .

[42]  W. Breiland,et al.  Coherence in multilevel systems. I. Coherence in excited states and its application to optically detected magnetic resonance in phosphorescent triplet states , 1975 .