The Cahn–Hilliard–Oono equation with singular potential

We consider the so-called Cahn–Hilliard–Oono equation with singular (e.g. logarithmic) potential in a bounded domain of ℝd, d ≤ 3. The equation is subject to an initial condition and Neumann homogeneous boundary conditions for the order parameter as well as for the chemical potential. However, contrary to the Cahn–Hilliard equation, the total mass might not be conserved. The existence of a global finite energy solution to such a problem was proven by Miranville and Temam. We first establish some regularization properties in finite time of the (unique) solution. Then, in dimension two, we prove the so-called strict separation property, namely, we show that any finite energy solution stays away from pure phases, uniformly with respect to the initial energy and the total mass. Taking advantage of these results, we study the long-time behavior of solutions. More precisely, we establish the existence of the global attractor in both two and three dimensions. Due to the strict separation property in dimension tw...

[1]  Sergey Zelik,et al.  On a generalized Cahn-Hilliard equation with biological applications , 2014 .

[2]  E. Rocca,et al.  Universal attractor for some singular phase transition systems , 2004 .

[3]  Puri,et al.  Study of phase-separation dynamics by use of cell dynamical systems. I. Modeling. , 1988, Physical review. A, General physics.

[4]  Sergey Zelik,et al.  Robust exponential attractors for Cahn‐Hilliard type equations with singular potentials , 2004 .

[5]  Helmut Abels,et al.  On a Diffuse Interface Model for Two-Phase Flows of Viscous, Incompressible Fluids with Matched Densities , 2009 .

[6]  Mark A. Peletier,et al.  On the Phase Diagram for Microphase Separation of Diblock Copolymers: An Approach via a Nonlocal Cahn--Hilliard Functional , 2009, SIAM J. Appl. Math..

[7]  Maurizio Grasselli,et al.  The Cahn–Hilliard–Hele–Shaw system with singular potential , 2018, Annales de l'Institut Henri Poincaré C, Analyse non linéaire.

[8]  A. Miranville ASYMPTOTIC BEHAVIOR OF THE CAHN-HILLIARD-OONO EQUATION , 2011 .

[9]  Songmu Zheng Asymptotic behavior for strong solutions of the Navier–Stokes equations with external forces , 2001 .

[10]  Sergey Zelik,et al.  Chapter 3 Attractors for Dissipative Partial Differential Equations in Bounded and Unbounded Domains , 2008 .

[11]  Herbert Gajewski,et al.  A descent method for the free energy of multicomponent systems , 2006 .

[12]  Cyrill B. Muratov,et al.  Communications in Mathematical Physics Droplet Phases in Non-local Ginzburg-Landau Models with Coulomb Repulsion in Two Dimensions , 2010 .

[13]  Patrick E. Farrell,et al.  A Preconditioner for the Ohta-Kawasaki Equation , 2016, SIAM J. Matrix Anal. Appl..

[14]  Q. Tran‐Cong‐Miyata,et al.  Controlling the morphology of polymer blends using periodic irradiation , 2004, Nature materials.

[15]  Hussein Fakih A Cahn-Hilliard equation with a proliferation term for biological and chemical applications , 2015, Asymptot. Anal..

[16]  Sergey Zelik,et al.  The Cahn-Hilliard Equation with Logarithmic Potentials , 2011 .

[17]  S. Villain-Guillot 1D Cahn–Hilliard equation for modulated phase systems , 2009 .

[18]  Muthukumar,et al.  Reaction-controlled morphology of phase-separating mixtures. , 1995, Physical review letters.

[19]  M. Grasselli,et al.  Global and Trajectory Attractors for a Nonlocal Cahn–Hilliard–Navier–Stokes System , 2011, 1107.5933.

[20]  S. Zelik,et al.  Global well-posedness and attractors for the hyperbolic Cahn-Hilliard-Oono equation in the whole space , 2014, 1407.5890.

[21]  Oono,et al.  Cell dynamical system approach to block copolymers. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[22]  Nam Q. Le,et al.  On the Convergence of the Ohta-Kawasaki Equation to Motion by Nonlocal Mullins-Sekerka Law , 2009, SIAM J. Math. Anal..

[23]  A. Miranville,et al.  On the longtime behavior of a 2D hydrodynamic model for chemically reacting binary fluid mixtures , 2014 .

[24]  Yasumasa Nishiura,et al.  Some mathematical aspects of the micro-phase separation in diblock copolymers , 1995 .

[25]  R. Temam,et al.  On the Cahn-Hilliard-Oono-Navier-Stokes equations with singular potentials , 2016 .

[26]  X. Ren,et al.  On the Derivation of a Density Functional Theory for Microphase Separation of Diblock Copolymers , 2003 .

[27]  J. F. Williams,et al.  2D Phase Diagram for Minimizers of a Cahn-Hilliard Functional with Long-Range Interactions , 2011, SIAM J. Appl. Dyn. Syst..

[28]  S. Serfaty,et al.  The Γ-Limit of the Two-Dimensional Ohta–Kawasaki Energy. I. Droplet Density , 2011, 1201.0222.

[29]  S. Serfaty,et al.  The Γ-Limit of the Two-Dimensional Ohta–Kawasaki Energy. Droplet Arrangement via the Renormalized Energy , 2014 .

[30]  Rustum Choksi,et al.  Scaling Laws in Microphase Separation of Diblock Copolymers , 2001, J. Nonlinear Sci..

[31]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[32]  John W. Cahn,et al.  On Spinodal Decomposition , 1961 .

[33]  S. Zelik,et al.  Finite dimensionality of the attractor for the hyperbolic Cahn–Hilliard–Oono equation in R3 , 2015, 1502.02156.

[34]  Ciprian G. Gal,et al.  The nonlocal Cahn–Hilliard equation with singular potential: Well-posedness, regularity and strict separation property , 2017 .

[35]  Steven M. Wise,et al.  A MIXED DISCONTINUOUS GALERKIN, CONVEX SPLITTING SCHEME FOR A MODIFIED CAHN-HILLIARD EQUATION AND AN EFFICIENT NONLINEAR MULTIGRID SOLVER , 2013 .

[36]  Helmut Abels,et al.  Convergence to equilibrium for the Cahn–Hilliard equation with a logarithmic free energy , 2007 .

[37]  K. Kawasaki,et al.  Equilibrium morphology of block copolymer melts , 1986 .

[38]  Eduard Feireisl,et al.  Convergence for Semilinear Degenerate Parabolic Equations in Several Space Dimensions , 2000 .

[39]  Takashi Teramoto,et al.  Double Gyroid Morphology in a Gradient System with Nonlocal Effects , 2002 .

[40]  Puri,et al.  Computationally efficient modeling of ordering of quenched phases. , 1987, Physical review letters.