Nongradient Methods in Multidisciplinary Design Optimization-Status and Potential

A number of multidisciplinary design optimization (MDO) problems are characterized by the presence of discrete and integer design variables, over and beyond the more traditional continuous variable problems. In continuous variable design problems, the design space may be nonconvex or even disjointed. Furthermore, the number of design variables and constraints may be quite large. The use of conventional gradient-based methods in such problems is fraught with hazards. First, these gradient-based methods cannot be used directly in the presence of discrete variables. Their use is facilitated by creating multiple equivalent continuous variable problems; in the presence of high dimensionality, the number of such problems to be solved can be quite large. Second, these methods have a propensity to converge to a relative optimum closest to the starting point, and this is a major weakness in the presence of multimodality in the design space. This paper primarily focuses on the use of nontraditional optimization methods in such problems, broadly classified today as soft computing strategies. These methods include techniques such as simulated annealing, genetic algorithms, Tabu search, and rule-based expert systems. It also examines issues pertinent to using these methods in MDO problems.

[1]  Yi Min Xie,et al.  Structural topology design with multiple thermal criteria , 2000 .

[2]  P. Hajela,et al.  IMMUNE NETWORK MODELING IN MULTICRITERION DESIGN OF STRUCTURAL SYSTEMS , 1998 .

[3]  Sanjay Goel,et al.  Machine learning paradigms in design optimization: applications in turbine aerodynamic design , 1998 .

[4]  P. Hajela,et al.  GA's in decomposition based design-subsystem interactions through immune network simulation , 1997 .

[5]  Jongsoo Lee,et al.  GA BASED SIMULATION OF IMMUNE NETWORKS APPLICATIONS IN STRUCTURAL OPTIMIZATION , 1997 .

[6]  Patrick Siarry,et al.  Enhanced simulated annealing for globally minimizing functions of many-continuous variables , 1997, TOMS.

[7]  Anthony A. Giunta,et al.  Aircraft Multidisciplinary Design Optimization using Design of Experiments Theory and Response Surface Modeling Methods , 1997 .

[8]  P. Hajela,et al.  Constraint handling in genetic search using expression strategies , 1996 .

[9]  Raphael T. Haftka,et al.  Construction of response surfaces for design optimization applications , 1996 .

[10]  B. P. Wang,et al.  A new method for dual response surface optimization , 1996 .

[11]  Bernard Grossman,et al.  Response surface approximations for pitching moment including pitch-up in the MDO design of an HSCT , 1996 .

[12]  Jongsoo Lee,et al.  Parallel Genetic Algorithm Implementation in Multidisciplinary Rotor Blade Design , 1996 .

[13]  Jongsoo Lee,et al.  Constrained genetic search via schema adaptation: An immune network solution , 1996 .

[14]  Sanjay Goel,et al.  Identification of parameter coupling in turbine design using neural networks , 1996 .

[15]  Thomas Bäck,et al.  Evolutionary Algorithms in Theory and Practice , 1996 .

[16]  P. Hajela,et al.  Role of Emergent Computing Techniques in Multidisciplinary Rotor Blade Design , 1996 .

[17]  B. Epstein,et al.  Massive Parallelization as Prinicipal Technology for Constrained Optimization of Aerodynamic Shapes , 1996 .

[18]  János D. Pintér,et al.  Global optimization in action , 1995 .

[19]  A. Osyczka,et al.  A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm , 1995 .

[20]  Sherif Aly,et al.  Stochastic optimization applied to CFD shape design , 1995 .

[21]  Bernard Grossman,et al.  Variable-complexity response surface aerodynamic design of an HSCT wing , 1995 .

[22]  C. Ribeiro,et al.  A Tabu Search Approach to Task Scheduling on Heterogeneous Processors under Precedence Constraints , 1995, Int. J. High Speed Comput..

[23]  Jaroslaw Sobieszczanski-Sobieski,et al.  Multidisciplinary Design Optimization: An Emerging New Engineering Discipline , 1995 .

[24]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[25]  Rodolphe Le Riche,et al.  Optimization of composite structures by genetic algorithms , 1995 .

[26]  Prabhat Hajela,et al.  Neurocomputing strategies in structural design — on analysing weights of feedforward neural networks , 1994 .

[27]  Percy P. C. Yip,et al.  A Guided Evolutionary Simulated Annealing Approach to the Quadratic Assignment Problem , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[28]  Madara Ogot,et al.  Dimensional Tolerance Allocation of Stochastic Dynamic Mechanical Systems Through Performance and Sensitivity Analysis , 1993 .

[29]  Inhwan Han,et al.  The Incorporation of Arc Boundaries and Stick/Slip Friction in a Rule-Based Simulation Algorithm for Dynamic Mechanical Systems with Changing Topologies , 1993 .

[30]  Prabhat Hajela,et al.  Neural network approximations in a simulated annealing based optimal structural design , 1993 .

[31]  Alan S. Perelson,et al.  Searching for Diverse, Cooperative Populations with Genetic Algorithms , 1993, Evolutionary Computation.

[32]  R. Haftka,et al.  Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm , 1993 .

[33]  Mauro Dell'Amico,et al.  Applying tabu search to the job-shop scheduling problem , 1993, Ann. Oper. Res..

[34]  Madara Ogot,et al.  AN EFFECTIVE MIXED ANNEALING/HEURISTIC ALGORITHM FOR PROBLEMS IN KINEMATIC MECHANICAL DESIGN , 1993 .

[35]  P. Hajela,et al.  GENETIC SEARCH STRATEGIES IN LARGE SCALE OPTIMIZATION , 1993 .

[36]  Sanjay Goel,et al.  Knowledge-based system for preliminary aerodynamic design of aircraft engine turbines , 1993, Defense, Security, and Sensing.

[37]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[38]  Heinz Mühlenbein,et al.  The parallel genetic algorithm as function optimizer , 1991, Parallel Comput..

[39]  Gun-Shing Chen,et al.  OPTIMAL PLACEMENT OF ACTIVE/PASSIVE MEMBERS IN TRUSS STRUCTURES USING SIMULATED ANNEALING , 1991 .

[40]  Richard J. Balling,et al.  Optimal Steel Frame Design by Simulated Annealing , 1991 .

[41]  P. Hajela,et al.  Genetic search strategies in multicriterion optimal design , 1991 .

[42]  Christina Bloebaum,et al.  Application of global sensitivity equations in multidisciplinary aircraft synthesis , 1990 .

[43]  Emile H. L. Aarts,et al.  Simulated annealing and Boltzmann machines - a stochastic approach to combinatorial optimization and neural computing , 1990, Wiley-Interscience series in discrete mathematics and optimization.

[44]  Rex K. Kincaid,et al.  Minimizing distortion and internal forces in truss structures via simulated annealing , 1990 .

[45]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[46]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning , 1989, Oper. Res..

[47]  Bernard Manderick,et al.  Fine-Grained Parallel Genetic Algorithms , 1989, ICGA.

[48]  David E. Goldberg,et al.  Sizing Populations for Serial and Parallel Genetic Algorithms , 1989, ICGA.

[49]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[50]  Robert J. Antonio Searching for Justice , 1988, Telos.

[51]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[52]  George E. P. Box,et al.  Empirical Model‐Building and Response Surfaces , 1988 .

[53]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[54]  David E. Goldberg,et al.  Finite Markov Chain Analysis of Genetic Algorithms , 1987, ICGA.

[55]  Alan S. Perelson,et al.  The immune system, adaptation, and machine learning , 1986 .

[56]  Alistair I. Mees,et al.  Convergence of an annealing algorithm , 1986, Math. Program..

[57]  John H. Holland,et al.  Properties of the Bucket Brigade , 1985, ICGA.

[58]  R. H. Tolson,et al.  Multidisciplinary analysis and synthesis - Needs and opportunities , 1985 .

[59]  John H. Holland,et al.  Properties of the bucket brigade algorithm , 1985 .

[60]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[61]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[62]  J. Sobieszczanski-Sobieski,et al.  A linear decomposition method for large optimization problems. Blueprint for development , 1982 .

[63]  Kenneth de Jong,et al.  Adaptive System Design: A Genetic Approach , 1980, IEEE Trans. Syst. Man Cybern..

[64]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[65]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[66]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[67]  M. J. Box A New Method of Constrained Optimization and a Comparison With Other Methods , 1965, Comput. J..

[68]  M. J. D. Powell,et al.  A Method for Minimizing a Sum of Squares of Non-Linear Functions Without Calculating Derivatives , 1965, Comput. J..

[69]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[70]  M. J. D. Powell,et al.  An efficient method for finding the minimum of a function of several variables without calculating derivatives , 1964, Comput. J..

[71]  John H. Holland,et al.  Outline for a Logical Theory of Adaptive Systems , 1962, JACM.

[72]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[73]  H. H. Rosenbrock,et al.  An Automatic Method for Finding the Greatest or Least Value of a Function , 1960, Comput. J..

[74]  Howard Campaigne,et al.  Some experiments in machine learning , 1959, IRE-AIEE-ACM '59 (Western).

[75]  George E. P. Box,et al.  Evolutionary Operation: a Method for Increasing Industrial Productivity , 1957 .

[76]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.