Chapter 5: Smooth Surface Reconstruction Using Doo-Sabin Subdivision Surfaces
暂无分享,去创建一个
Fuhua Cheng | Shuhua Lai | Fengtao Fan | Conglin Huang | Jiaxi Wang | Fengtao Fan | F. Cheng | S. Lai | K. Miura | K.T. Miura | Conglin Huang | Jiaxi Wang
[1] Tony DeRose,et al. Surface reconstruction from unorganized points , 1992, SIGGRAPH.
[2] Juan Manuel Peña,et al. Progressive iterative approximation and bases with the fastest convergence rates , 2007, Comput. Aided Geom. Des..
[3] Peter Schröder,et al. Fitting subdivision surfaces , 2001, Proceedings Visualization, 2001. VIS '01..
[4] Thomas A. Funkhouser,et al. The Princeton Shape Benchmark (Figures 1 and 2) , 2004, Shape Modeling International Conference.
[5] N. Dyn,et al. A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.
[6] G. Farin. Curves and Surfaces for Cagd: A Practical Guide , 2001 .
[7] Malcolm A. Sabin,et al. Behaviour of recursive division surfaces near extraordinary points , 1998 .
[8] Ahmad H. Nasri,et al. Surface interpolation on irregular networks with normal conditions , 1991, Comput. Aided Geom. Des..
[9] H. Bao,et al. Totally positive bases and progressive iteration approximation , 2005 .
[10] Thomas A. Funkhouser,et al. The Princeton Shape Benchmark , 2004, Proceedings Shape Modeling Applications, 2004..
[11] David Cohen-Steiner,et al. A greedy Delaunay-based surface reconstruction algorithm , 2004, The Visual Computer.
[12] Tamal K. Dey,et al. An Adaptive MLS Surface for Reconstruction with Guarantees , 2022 .
[13] Jianmin Zheng,et al. Interpolation over arbitrary topology meshes using a two-phase subdivision scheme , 2006, IEEE Transactions on Visualization and Computer Graphics.
[14] Charles T. Loop,et al. Smooth Subdivision Surfaces Based on Triangles , 1987 .
[15] E. Catmull,et al. Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .
[16] Jianmin Zheng,et al. Making Doo-Sabin surface interpolation always work over irregular meshes , 2005, The Visual Computer.
[17] Tony DeRose,et al. Efficient, fair interpolation using Catmull-Clark surfaces , 1993, SIGGRAPH.
[18] Leif Kobbelt,et al. Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology , 1996, Comput. Graph. Forum.
[19] C. D. Boor. How does Agee ’ s smoothing method work ? , .
[20] Guojin Wang,et al. Constructing iterative non-uniform B-spline curve and surface to fit data points , 2004, Science in China Series : Information Sciences.
[21] Deming Li. The Star Chromatic Numbers of Some Planar Graphs Derived from Wheels , 2002 .
[22] Fuhua Cheng,et al. Similarity based interpolation using Catmull–Clark subdivision surfaces , 2006, The Visual Computer.
[23] J. Magnus,et al. Matrix Differential Calculus with Applications in Statistics and Econometrics , 1991 .
[24] Peter Schröder,et al. Interpolating Subdivision for meshes with arbitrary topology , 1996, SIGGRAPH.