Surface analysis of sulfur speciation on pyrite bioleached by extreme thermophile Acidianus manzaensis using Raman and XANES spectroscopy

[1]  Lei Zheng,et al.  Sulfur speciation on the surface of chalcopyrite leached by Acidianus manzaensis , 2009 .

[2]  K. Blight,et al.  The preferential oxidation of orthorhombic sulfur during batch culture , 2009 .

[3]  Sylvie C. Bouffard,et al.  Modeling pyrite bioleaching in isothermal test columns with the HeapSim model , 2009 .

[4]  T. Hirajima,et al.  Raman characterization of secondary minerals formed during chalcopyrite leaching with Acidithiobacillus ferrooxidans , 2009 .

[5]  J. Xia,et al.  Growth and surface properties of new thermoacidophilic Archaea strain Acidianus manzaensis YN-25 grown on different substrates , 2008 .

[6]  Yue-hua Hu,et al.  Bioleaching of pyrite by A.ferrooxidans and L.ferriphilum , 2008 .

[7]  J. Dutrizac Factors Affecting the Precipitation of Potassium Jarosite in Sulfate and Chloride Media , 2008 .

[8]  C. Inoue,et al.  Bioleaching of chalcopyrite with thermophiles: Temperature–pH–ORP dependence , 2008 .

[9]  R. Woods,et al.  Raman investigation of chalcopyrite oxidation , 2008 .

[10]  C. Klauber A critical review of the surface chemistry of acidic ferric sulphate dissolution of chalcopyrite with regards to hindered dissolution , 2008 .

[11]  B. Humbert,et al.  Pyrite oxidation in acidic medium: overall reaction pathway , 2008 .

[12]  P. Franzmann,et al.  Effect of pH on rates of iron and sulfur oxidation by bioleaching organisms , 2008 .

[13]  G. Qiu,et al.  Jarosite-type precipitates mediated by YN22, Sulfobacillus thermosulfidooxidans, and their influences on strain , 2007 .

[14]  A. McEwan,et al.  Visualisation of pyrite leaching by selected thermophilic archaea: Nature of microorganism–ore interactions during bioleaching , 2007 .

[15]  C. Mustin,et al.  O and S isotopic composition of dissolved and attached oxidation products of pyrite by Acidithiobacillus ferrooxidans: Comparison with abiotic oxidations , 2007 .

[16]  O. Tuovinen,et al.  Synthesis and properties of ammoniojarosites prepared with iron-oxidizing acidophilic microorganisms at 22–65 °C , 2007 .

[17]  M. Ishii,et al.  Acidianus manzaensis sp. nov., a Novel Thermoacidophilic Archaeon Growing Autotrophically by the Oxidation of H2 with the Reduction of Fe3+ , 2006, Current Microbiology.

[18]  G. Druschel,et al.  Comment on “Pyrite dissolution in acidic media” by M. Descostes, P. Vitorge, and C. Beaucaire , 2006 .

[19]  R. Frost,et al.  A Raman spectroscopic study of selected natural jarosites. , 2006, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[20]  P. Franzmann,et al.  Effects of temperature on the rates of iron and sulfur oxidation by selected bioleaching Bacteria and Archaea: Application of the Ratkowsky equation , 2005 .

[21]  A. Gerson,et al.  Electronic and optical properties of Fe, Zn and Pb sulfides , 2005 .

[22]  P. Vitorge,et al.  Pyrite dissolution in acidic media , 2004 .

[23]  D. Paktunc A computer program for analysing complex bulk XAFS spectra and for performing significance tests. , 2004, Journal of synchrotron radiation.

[24]  M. Schoonen,et al.  A vibrational spectroscopic study of the oxidation of pyrite by molecular oxygen , 2004 .

[25]  M. Schoonen,et al.  A vibrational spectroscopic study of the oxidation of pyrite by ferric iron , 2004 .

[26]  I. Chernyshova An in situ FTIR study of galena and pyrite oxidation in aqueous solution , 2003 .

[27]  Antonio Ballester,et al.  New information on the chalcopyrite bioleaching mechanism at low and high temperature , 2003 .

[28]  J. Rimstidt,et al.  Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism , 2003 .

[29]  B. Eckert,et al.  Molecular Spectra of Sulfur Molecules and Solid Sulfur Allotropes , 2003 .

[30]  C. Klauber,et al.  Sulphur speciation of leached chalcopyrite surfaces as determined by X-ray photoelectron spectroscopy , 2001 .

[31]  K. Blight,et al.  Pyrite surfaces after bio-leaching: a mechanism for bio-oxidation , 2000 .

[32]  N. Brandon,et al.  Electrochemical oxidation of pyrite (FeS2) in aqueous electrolytes , 1999 .

[33]  W. Sand,et al.  Intermediary sulfur compounds in pyrite oxidation: implications for bioleaching and biodepyritization of coal , 1999, Applied Microbiology and Biotechnology.

[34]  C. Mustin,et al.  Elemental sulfur at the pyrite surfaces: speciation and quantification , 1999 .

[35]  T. Ressler WinXAS: a program for X-ray absorption spectroscopy data analysis under MS-Windows. , 1998, Journal of synchrotron radiation.

[36]  H. Tributsch,et al.  The path of sulfur during the bio-oxidation of pyrite by Thiobacillus ferrooxidans , 1996 .

[37]  M. Tsunekawa,et al.  Confirmation of a sulfur-rich layer on pyrite after oxidative dissolution by Fe(lIl) ions around pH2 , 1995 .

[38]  R. Pattrick,et al.  X-ray absorption near-edge spectra of transition metal disulfides FeS2 (pyrite and marcasite), CoS2, NiS2 and CuS2, and their isomorphs FeAsS and CoAsS , 1995 .