Ensemble of Deep Neural Networks with Probability-Based Fusion for Facial Expression Recognition

[1]  Chalavadi Krishna Mohan,et al.  Hybrid deep neural network model for human action recognition , 2016, Appl. Soft Comput..

[2]  António Pereira,et al.  Integrated e-Healthcare System for Elderly Support , 2016, Cognitive Computation.

[3]  Soo-Young Lee,et al.  Hierarchical committee of deep convolutional neural networks for robust facial expression recognition , 2016, Journal on Multimodal User Interfaces.

[4]  Mahdi Eftekhari,et al.  A new ensemble learning methodology based on hybridization of classifier ensemble selection approaches , 2015, Appl. Soft Comput..

[5]  Mohammad H. Mahoor,et al.  Going deeper in facial expression recognition using deep neural networks , 2015, 2016 IEEE Winter Conference on Applications of Computer Vision (WACV).

[6]  Tamás D. Gedeon,et al.  Video and Image based Emotion Recognition Challenges in the Wild: EmotiW 2015 , 2015, ICMI.

[7]  Lin Ma,et al.  Multimodal learning for facial expression recognition , 2015, Pattern Recognit..

[8]  Shiguang Shan,et al.  AU-inspired Deep Networks for Facial Expression Feature Learning , 2015, Neurocomputing.

[9]  Rasmus Larsen,et al.  An Ensemble of 2D Convolutional Neural Networks for Tumor Segmentation , 2015, SCIA.

[10]  W. Blewitt,et al.  Models for Computational Emotions from Psychological Theories Using Type-II Fuzzy Logic , 2015, Cognitive Computation.

[11]  Qijun Zhao,et al.  A transfer learning approach to cross-database facial expression recognition , 2015, 2015 International Conference on Biometrics (ICB).

[12]  Wei Li,et al.  A deep-learning approach to facial expression recognition with candid images , 2015, 2015 14th IAPR International Conference on Machine Vision Applications (MVA).

[13]  Aurobinda Routray,et al.  Automatic facial expression recognition using features of salient facial patches , 2015, IEEE Transactions on Affective Computing.

[14]  Junmo Kim,et al.  Development of deep learning-based facial expression recognition system , 2015, 2015 21st Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV).

[15]  Nima Tajbakhsh,et al.  Automatic polyp detection in colonoscopy videos using an ensemble of convolutional neural networks , 2015, 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI).

[16]  Dirk Heylen,et al.  Open Challenges in Modelling, Analysis and Synthesis of Human Behaviour in Human–Human and Human–Machine Interactions , 2015, Cognitive Computation.

[17]  Guihua Wen,et al.  Weighted spectral features based on local Hu moments for speech emotion recognition , 2015, Biomed. Signal Process. Control..

[18]  Yoshua Bengio,et al.  Editorial introduction to the Neural Networks special issue on Deep Learning of Representations , 2015, Neural Networks.

[19]  Christopher Joseph Pal,et al.  EmoNets: Multimodal deep learning approaches for emotion recognition in video , 2015, Journal on Multimodal User Interfaces.

[20]  F. Schwenker,et al.  Neural Network Ensembles in Reinforcement Learning , 2015, Neural Processing Letters.

[21]  A. Hussain,et al.  Concept-Level Sentiment Analysis with Dependency-Based Semantic Parsing: A Novel Approach , 2015, Cognitive Computation.

[22]  Shiguang Shan,et al.  Combining Multiple Kernel Methods on Riemannian Manifold for Emotion Recognition in the Wild , 2014, ICMI.

[23]  Luís A. Alexandre,et al.  Weighted Convolutional Neural Network Ensemble , 2014, CIARP.

[24]  Zhiyong Feng,et al.  Facial expression recognition via deep learning , 2014, 2014 International Conference on Smart Computing.

[25]  Lei Xie,et al.  An ensemble of deep neural networks for object tracking , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[26]  Bin Jiang,et al.  A Deep Structure for Facial Expression Recognition under Partial Occlusion , 2014, 2014 Tenth International Conference on Intelligent Information Hiding and Multimedia Signal Processing.

[27]  Ping Liu,et al.  Facial Expression Recognition via a Boosted Deep Belief Network , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[28]  Xiaogang Wang,et al.  Deep Learning Face Representation from Predicting 10,000 Classes , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[29]  Ming Yang,et al.  DeepFace: Closing the Gap to Human-Level Performance in Face Verification , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[30]  M. Firoozabadi,et al.  Classification of Music-Induced Emotions Based on Information Fusion of Forehead Biosignals and Electrocardiogram , 2014, Cognitive Computation.

[31]  Ying Chen,et al.  Facial Expression Recognition via Non-Negative Least-Squares Sparse Coding , 2014, Inf..

[32]  Jake K. Aggarwal,et al.  Spontaneous facial expression recognition: A robust metric learning approach , 2014, Pattern Recognit..

[33]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[34]  Martin D. Levine,et al.  Fully automated recognition of spontaneous facial expressions in videos using random forest classifiers , 2014, IEEE Transactions on Affective Computing.

[35]  Fabio A. González,et al.  Cascaded ensemble of convolutional neural networks and handcrafted features for mitosis detection , 2014, Medical Imaging.

[36]  Marek Kurzynski,et al.  Optimal selection of ensemble classifiers using measures of competence and diversity of base classifiers , 2014, Neurocomputing.

[37]  Vinod Chandran,et al.  Facial expression recognition experiments with data from television broadcasts and the World Wide Web , 2014, Image Vis. Comput..

[38]  Yanhua Zhang,et al.  Multi-classifier Fusion Based Facial Expression Recognition Approach , 2014, KSII Trans. Internet Inf. Syst..

[39]  Le Zhang,et al.  Ensemble deep learning for regression and time series forecasting , 2014, 2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL).

[40]  Shiguang Shan,et al.  Partial least squares regression on grassmannian manifold for emotion recognition , 2013, ICMI '13.

[41]  Yann LeCun,et al.  Understanding Deep Architectures using a Recursive Convolutional Network , 2013, ICLR.

[42]  Qiang Ji,et al.  Facial Expression Recognition Using Deep Boltzmann Machine from Thermal Infrared Images , 2013, 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction.

[43]  Geoffrey E. Hinton,et al.  Modeling Natural Images Using Gated MRFs , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Ian J. Goodfellow,et al.  Pylearn2: a machine learning research library , 2013, ArXiv.

[45]  Yoshua Bengio,et al.  Challenges in representation learning: A report on three machine learning contests , 2013, Neural Networks.

[46]  Yichuan Tang,et al.  Deep Learning using Linear Support Vector Machines , 2013, 1306.0239.

[47]  Honglak Lee,et al.  Deep learning for robust feature generation in audiovisual emotion recognition , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[48]  Tara N. Sainath,et al.  Improving deep neural networks for LVCSR using rectified linear units and dropout , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[49]  Yoshua Bengio,et al.  Maxout Networks , 2013, ICML.

[50]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[51]  Pascal Vincent,et al.  Disentangling Factors of Variation for Facial Expression Recognition , 2012, ECCV.

[52]  Lijun Yin,et al.  Static and dynamic 3D facial expression recognition: A comprehensive survey , 2012, Image Vis. Comput..

[53]  Maja Pantic,et al.  Meta-Analysis of the First Facial Expression Recognition Challenge , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[54]  Zhen Li,et al.  Recognizing Emotions From an Ensemble of Features , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[55]  Nitish Srivastava,et al.  Improving neural networks by preventing co-adaptation of feature detectors , 2012, ArXiv.

[56]  Bernard Fong,et al.  Affective Computing in Consumer Electronics , 2012, IEEE Trans. Affect. Comput..

[57]  Jürgen Schmidhuber,et al.  Multi-column deep neural networks for image classification , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[58]  Geoffrey E. Hinton,et al.  On deep generative models with applications to recognition , 2011, CVPR 2011.

[59]  Gwen Littlewort,et al.  The computer expression recognition toolbox (CERT) , 2011, Face and Gesture 2011.

[60]  Takeo Kanade,et al.  The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops.

[61]  Shaogang Gong,et al.  Facial expression recognition based on Local Binary Patterns: A comprehensive study , 2009, Image Vis. Comput..

[62]  Geoffrey E. Hinton,et al.  Generating Facial Expressions with Deep Belief Nets , 2008 .

[63]  Surendra Ranganath,et al.  Cloud basis function neural network: A modified RBF network architecture for holistic facial expression recognition , 2008, Pattern Recognit..

[64]  Michael J. Lyons,et al.  Automatic Classification of Single Facial Images , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[65]  Abolghasem A. Raie,et al.  Suitable models for face geometry normalization in facial expression recognition , 2015, J. Electronic Imaging.

[66]  Maja Pantic,et al.  Discriminative Shared Gaussian Processes for Multiview and View-Invariant Facial Expression Recognition , 2015, IEEE Transactions on Image Processing.

[67]  Chun-Xia Zhang,et al.  Learning ensemble classifiers via restricted Boltzmann machines , 2014, Pattern Recognit. Lett..

[68]  B. Radig,et al.  Cross-database evaluation for facial expression recognition , 2014, Pattern Recognition and Image Analysis.

[69]  Jianhou Gan,et al.  Feature Extraction based on Local Directional Pattern with SVM Decision-level Fusion for Facial Expression Recognition , 2013 .

[70]  Y. V. Venkatesh,et al.  Facial expression recognition using radial encoding of local Gabor features and classifier synthesis , 2012, Pattern Recognit..

[71]  Fernando De la Torre,et al.  Facial Expression Analysis , 2011, Visual Analysis of Humans.

[72]  Vennila Ramalingam,et al.  Facial expression recognition - A real time approach , 2009, Expert Syst. Appl..

[73]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[74]  A. Rogier [Communication without words]. , 1971, Tijdschrift voor ziekenverpleging.