Genome-wide significant risk associations for mucinous ovarian carcinoma

Yurii B. Shvetsov | A. Whittemore | L. Kiemeney | M. Pike | M. Beckmann | P. Fasching | R. Vierkant | T. Sellers | A. Hein | J. Chang-Claude | B. Fridley | E. Goode | B. Karlan | N. Le | A. Berchuck | E. Iversen | G. Giles | T. Dörk | M. Southey | Xifeng Wu | P. Pharoah | D. Lambrechts | A. Brooks-Wilson | D. Levine | L. Wilkens | P. Hillemanns | X. Shu | W. Zheng | Yuxue Gao | A. Ziogas | H. Anton-Culver | R. Glasspool | U. Menon | A. Gentry-Maharaj | K. Aben | D. Eccles | G. Chenevix-Trench | L. Brinton | J. Lissowska | H. Nevanlinna | N. Bogdanova | J. Beesley | Xiaoqing Chen | S. Orsulic | J. Cunningham | M. Goodman | S. Kjaer | M. Freedman | J. Dennis | E. Dicks | A. Rudolph | A. Ekici | A. Jakubowska | J. Lubiński | N. Antonenkova | K. Matsuo | A. Wu | S. Teo | J. Tyrer | U. Eilber | S. Wang-gohrke | S. Gayther | D. Cramer | N. Wentzensen | B. Rosen | I. Vergote | R. Ness | I. McNeish | S. Olson | H. Risch | L. Kelemen | S. Narod | K. Odunsi | I. Campbell | I. Runnebaum | I. Orlow | J. Doherty | J. Schildkraut | K. Moysich | F. Modugno | B. Ji | M. Bisogna | J. McLaughlin | H. Salvesen | L. Massuger | L. Sucheston | Y. Woo | D. Easton | A. V. van Altena | E. Bandera | M. Hildebrandt | C. Pearce | F. Heitz | P. Harter | A. du Bois | R. Butzow | Ji-Heui Seo | K. Lawrenson | Hannah P. Yang | J. Lester | C. Cybulski | V. McGuire | J. Rothstein | W. Sieh | C. Walsh | M. Rossing | Zhihua Chen | Honglin Song | C. Phelan | A. Jensen | L. Cook | N. Siddiqui | S. Tworoger | J. Kelley | R. Edwards | E. Høgdall | C. Høgdall | S. Ramus | L. Bjørge | C. Krakstad | S. Engelholm | Qiyuan Li | P. Harrington | J. Paul | I. Rzepecka | A. Dansonka-Mieszkowska | J. Kupryjańczyk | P. Fasching | L. Pelttari | K. Wicklund | P. Thompson | F. Bruinsma | Yukie T. Bean | K. Carty | M. Dürst | S. Hosono | S. Lambrechts | Alice W. Lee | S. Lele | A. Leminen | Dong Liang | L. Lundvall | E. Poole | I. Schwaab | K. Terry | I. L. Tangen | H. Hasmad | A. Altena | J. Moes-Sosnowska | Janet M. Lee | T. Spindler | E. Van Nieuwenhuysen | M. Azmi | Melissa Kellar | L. Nedergaard | Helen Baker | E. Nieuwenhuysen | Liisa M. Pelttari | Y. A. Chen | R. Bützow | S. K. Kjaer | A. Bois | W. Sawicki | Zhihua Chen | N. A. Adenan | L. Massuger | Usha Menon | Yu-Tang Gao | J. Lubiński | M. Dürst | T. Pejovic | Paul D. P. Pharoah | M. Beckmann | Jacek Grownwald | Soo-Hwang Teo | K. Lu | R. P. Weber | Peter Hillemanns | J. Permuth‐Wey | Line Bjørge | Janet M. Lee | Sawicki Wlodzimierz | Graham G. Giles | Jennifer Permuth‐Wey | Karen H. Lu | Marc T. Goodman | Malcolm C. Pike | Keitaro Matsuo | Valerie McGuire | Maria Bisogna | Lynne R. Wilkens | Wei Zheng | Xifeng Wu | W. Shan | Graham G. Giles | A. Wu | Robert P. Edwards | James Paul | Ian Campbell | Qiyuan Li | Linda S Cook | Joseph L. Kelley | Shashi Lele | Malcolm C Pike | Barry P. Rosen | W. Zheng

[1]  Simon G. Coetzee,et al.  Cell-type-specific enrichment of risk-associated regulatory elements at ovarian cancer susceptibility loci. , 2015, Human molecular genetics.

[2]  Yurii B. Shvetsov,et al.  Identification of six new susceptibility loci for invasive epithelial ovarian cancer , 2014, Nature Genetics.

[3]  B. Stranger,et al.  Expression QTL-based analyses reveal candidate causal genes and loci across five tumor types. , 2014, Human molecular genetics.

[4]  M. Dennis,et al.  Selection on a Variant Associated with Improved Viral Clearance Drives Local, Adaptive Pseudogenization of Interferon Lambda 4 (IFNL4) , 2014, PLoS genetics.

[5]  M. Zannini,et al.  A role for PAX8 in the tumorigenic phenotype of ovarian cancer cells , 2014, BMC Cancer.

[6]  R. Young,et al.  Super-Enhancers in the Control of Cell Identity and Disease , 2013, Cell.

[7]  Brooke L. Fridley,et al.  GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer , 2013, Nature Genetics.

[8]  Sebastian M. Armasu,et al.  Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer , 2013, Nature Genetics.

[9]  Jaana M. Hartikainen,et al.  Large-scale genotyping identifies 41 new loci associated with breast cancer risk , 2013, Nature Genetics.

[10]  Sebastian M. Armasu,et al.  Epigenetic analysis leads to identification of HNF1B as a subtype-specific susceptibility gene for ovarian cancer , 2013, Nature Communications.

[11]  A. Whittemore,et al.  Cigarette smoking and risk of ovarian cancer: a pooled analysis of 21 case–control studies , 2013, Cancer Causes & Control.

[12]  W. Chung,et al.  Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk , 2013, PLoS genetics.

[13]  J. Goedert,et al.  Genome-Wide Association Study of Spontaneous Resolution of Hepatitis C Virus Infection: Data From Multiple Cohorts , 2013, Annals of Internal Medicine.

[14]  A. McKenna,et al.  Integrative eQTL-Based Analyses Reveal the Biology of Breast Cancer Risk Loci , 2013, Cell.

[15]  Peter Kraft,et al.  Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array , 2013, Nature Genetics.

[16]  Christopher D. Brown,et al.  Integrative Modeling of eQTLs and Cis-Regulatory Elements Suggests Mechanisms Underlying Cell Type Specificity of eQTLs , 2012, PLoS genetics.

[17]  J. George,et al.  BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study Group. , 2012, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[18]  Steven J. M. Jones,et al.  Comprehensive molecular characterization of human colon and rectal cancer , 2012, Nature.

[19]  M. Pike,et al.  Association between endometriosis and risk of histological subtypes of ovarian cancer: a pooled analysis of case–control studies , 2012, The Lancet. Oncology.

[20]  Chang-Yun Lin,et al.  Blindly Using Wald's Test Can Miss Rare Disease‐Causal Variants in Case‐Control Association Studies , 2012, Annals of human genetics.

[21]  O. Delaneau,et al.  A linear complexity phasing method for thousands of genomes , 2011, Nature Methods.

[22]  Rochelle L. Garcia,et al.  Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing , 2011, Proceedings of the National Academy of Sciences.

[23]  M. Köbel,et al.  Mucinous carcinomas of the ovary and colorectum: different organ, same dilemma. , 2011, The Lancet. Oncology.

[24]  Kenneth P. Nephew,et al.  Rethinking ovarian cancer: recommendations for improving outcomes , 2011, Nature Reviews Cancer.

[25]  J. Mesirov,et al.  Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer , 2011, Proceedings of the National Academy of Sciences.

[26]  M. Loda,et al.  A Comprehensive Analysis of PAX8 Expression in Human Epithelial Tumors , 2011, The American journal of surgical pathology.

[27]  Benjamin J. Raphael,et al.  Integrated Genomic Analyses of Ovarian Carcinoma , 2011, Nature.

[28]  H. Okano,et al.  Functional analysis of HOXD9 in human gliomas and glioma cancer stem cells , 2011, Molecular Cancer.

[29]  Yusuke Nakamura,et al.  IL-28B predicts response to chronic hepatitis C therapy--fine-mapping and replication study in Asian populations. , 2011, The Journal of general virology.

[30]  R. Vierkant,et al.  LIN28B polymorphisms influence susceptibility to epithelial ovarian cancer. , 2011, Cancer research.

[31]  C. Mathers,et al.  Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008 , 2010, International journal of cancer.

[32]  K. Shianna,et al.  IL28B genotype is associated with differential expression of intrahepatic interferon‐stimulated genes in patients with chronic hepatitis C , 2010, Hepatology.

[33]  E. Dermitzakis,et al.  Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33 , 2010, Nature Genetics.

[34]  A. Whittemore,et al.  A genome-wide association study identifies susceptibility loci for ovarian cancer at 2q31 and 8q24 , 2010, Nature Genetics.

[35]  A. Whittemore,et al.  Common variants at 19p13 are associated with susceptibility to ovarian cancer , 2010, Nature Genetics.

[36]  R. Drapkin,et al.  PAX8 Reliably Distinguishes Ovarian Serous Tumors From Malignant Mesothelioma , 2010, The American journal of surgical pathology.

[37]  A. Whittemore,et al.  A genome-wide association study identifies a new ovarian cancer susceptibility locus on 9p22.2 , 2009, Nature Genetics.

[38]  G. Coetzee,et al.  The 8q24 cancer risk variant rs6983267 demonstrates long-range interaction with MYC in colorectal cancer , 2009, Nature Genetics.

[39]  P. Donnelly,et al.  A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.

[40]  S. Leung,et al.  Ovarian Carcinoma Subtypes Are Different Diseases: Implications for Biomarker Studies , 2008, PLoS medicine.

[41]  K. Judson,et al.  Distinction of Primary and Metastatic Mucinous Tumors Involving the Ovary: Analysis of Size and Laterality Data by Primary Site With Reevaluation of an Algorithm for Tumor Classification , 2008, The American journal of surgical pathology.

[42]  Barry Rosen,et al.  Population BRCA1 and BRCA2 mutation frequencies and cancer penetrances: a kin-cohort study in Ontario, Canada. , 2006, Journal of the National Cancer Institute.

[43]  D. Reich,et al.  Principal components analysis corrects for stratification in genome-wide association studies , 2006, Nature Genetics.

[44]  D. Cooper,et al.  A systematic analysis of disease-associated variants in the 3′ regulatory regions of human protein-coding genes II: the importance of mRNA secondary structure in assessing the functionality of 3′ UTR variants , 2006, Human Genetics.

[45]  N. Hacker,et al.  A distinct molecular profile associated with mucinous epithelial ovarian cancer , 2006, British Journal of Cancer.

[46]  Gordon B Mills,et al.  Patterns of Gene Expression in Different Histotypes of Epithelial Ovarian Cancer Correlate with Those in Normal Fallopian Tube, Endometrium, and Colon , 2005, Clinical Cancer Research.

[47]  R. Walker,et al.  World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of the Breast and Female Genital Organs , 2005 .

[48]  C. Gilks,et al.  Mucinous borderline ovarian tumors: points of general agreement and persistent controversies regarding nomenclature, diagnostic criteria, and behavior. , 2004, Human pathology.

[49]  I. Jacobs,et al.  A modified medium that significantly improves the growth of human normal ovarian surface epithelial (OSE) cells in vitro , 2004, Laboratory Investigation.

[50]  M. Eccles,et al.  Paired-Box genes are frequently expressed in cancer and often required for cancer cell survival , 2003, Oncogene.

[51]  Brigitte M. Ronnett,et al.  Primary and Metastatic Mucinous Adenocarcinomas in the Ovaries: Incidence in Routine Practice With a New Approach to Improve Intraoperative Diagnosis , 2003, The American journal of surgical pathology.

[52]  R. Young,et al.  The Distinction Between Primary and Metastatic Mucinous Carcinomas of the Ovary: Gross and Histologic Findings in 50 Cases , 2003, The American journal of surgical pathology.

[53]  Hung Li,et al.  Expression of homeobox genes in cervical cancer. , 2002, Gynecologic oncology.

[54]  C. Hopenhayn-Rich,et al.  Heterogeneity of Ovarian Cancer: Relationships Among Histological Group, Stage of Disease, Tumor Markers, Patient Characteristics, and Survival , 2002, Cancer investigation.

[55]  E. Negri,et al.  A Pooled Analysis of Case–Control Studies of Thyroid Cancer. VI. Fish and Shellfish Consumption , 2001, Cancer Causes & Control.

[56]  M. Wells,et al.  Precursor lesions of ovarian epithelial malignancy , 2001, Histopathology.

[57]  Noah A. Rosenberg,et al.  Association mapping in structured populations. , 2000, American journal of human genetics.

[58]  A. Villanueva,et al.  K‐ras mutations in mucinous ovarian tumors , 1997, Cancer.

[59]  J. Boyd,et al.  Hereditary ovarian cancer: molecular genetics and clinical implications. , 1997, Gynecologic oncology.

[60]  H. Risch,et al.  Differences in risk factors for epithelial ovarian cancer by histologic type. Results of a case-control study. , 1996, American journal of epidemiology.

[61]  R. Kurman,et al.  Disseminated peritoneal adenomucinosis and peritoneal mucinous carcinomatosis. A clinicopathologic analysis of 109 cases with emphasis on distinguishing pathologic features, site of origin, prognosis, and relationship to "pseudomyxoma peritonei". , 1995, The American journal of surgical pathology.

[62]  P. Tonin,et al.  Hereditary and familial ovarian cancer in southern ontario , 1994, Cancer.

[63]  H. Lynch,et al.  Hereditary ovarian cancer. Pedigree studies, Part II. , 1991, Cancer genetics and cytogenetics.

[64]  M. King,et al.  Linkage of early-onset familial breast cancer to chromosome 17q21. , 1990, Science.

[65]  T. Smyrk,et al.  Hereditary nonpolyposis colorectal cancer--Lynch syndromes I and II. , 1988, Gastroenterology clinics of North America.

[66]  Y. Nakamura,et al.  Genetic alterations during colorectal-tumor development. , 1988, The New England journal of medicine.

[67]  R. Kunzmann,et al.  Karyotype alterations in human ovarian carcinoma cells during long-term cultivation and nude mouse passage. , 1987, Cancer genetics and cytogenetics.

[68]  R. Elston,et al.  Hereditary nonpolyposis colorectal cancer (lynch syndromes I and II). II. Biomarker studies , 1985, Cancer.

[69]  A. Russo,et al.  Hereditary ovarian cancer. , 2009, Critical reviews in oncology/hematology.

[70]  A. Parwani Tumor cell type can be reproducibly diagnosed and is of independent prognostic significance in patients with maximally debulked ovarian carcinoma , 2009 .

[71]  Yang Wei-we,et al.  A Review on , 2008 .

[72]  W. R. Hart Mucinous tumors of the ovary: a review. , 2005, International journal of gynecological pathology : official journal of the International Society of Gynecological Pathologists.

[73]  T. Pejovic Genetic changes in ovarian cancer. , 1995, Annals of medicine.

[74]  M. Miwa,et al.  Mutation of K-ras protooncogene is associated with histological subtypes in human mucinous ovarian tumors. , 1994, Cancer research.

[75]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[76]  Howard C. Shen,et al.  Identification and molecular characterization of a new ovarian cancer susceptibility locus at 17q21.31 , 2022 .

[77]  Hongbing Shen,et al.  Genome-wide association study identifies new susceptibility loci for epithelial ovarian cancer in Han Chinese women , 2022 .

[78]  E. Halperin,et al.  Estimating Local Ancestry in Admixed Populations , 2022 .