Beyond 100 THz-spanning ultraviolet frequency combs in a non-centrosymmetric crystalline waveguide

[1]  H. Tang,et al.  Octave-spanning supercontinuum generation in nanoscale lithium niobate waveguides. , 2019, Optics letters.

[2]  G. Guo,et al.  Broadband frequency conversion and “area law” in tapered waveguides , 2018, OSA Continuum.

[3]  Martin M. Fejer,et al.  Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides , 2018, Optica.

[4]  Lai Wang,et al.  Generation of multiple near-visible comb lines in an AlN microring via χ(2) and χ(3) optical nonlinearities , 2018, Applied Physics Letters.

[5]  Alan D. Logan,et al.  400%/W second harmonic conversion efficiency in 14 μm-diameter gallium phosphide-on-oxide resonators. , 2018, Optics express.

[6]  H. Tang,et al.  High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators. , 2018, Optics letters.

[7]  Ingo Breunig,et al.  Frequency comb up- and down-conversion in synchronously driven χ(2) optical microresonators. , 2018, Optics letters.

[8]  Zheng Gong,et al.  17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators , 2018, Applied Physics Letters.

[9]  Zheng Gong,et al.  Ultra-high-Q UV microring resonators based on a single-crystalline AlN platform , 2018, Optica.

[10]  Camille-Sophie Brès,et al.  Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides , 2018 .

[11]  Arnan Mitchell,et al.  Mid-infrared octave spanning supercontinuum generation to 8.5 μm in silicon-germanium waveguides , 2018 .

[12]  Lai Wang,et al.  Integrated High-Q Crystalline AlN Microresonators for Broadband Kerr and Raman Frequency Combs , 2018 .

[13]  Jens Kobelke,et al.  UV Absorption Spectroscopy in Water-Filled Antiresonant Hollow Core Fibers for Pharmaceutical Detection , 2018, Sensors.

[14]  J. Bowers,et al.  Quasi-Phase-Matched Supercontinuum Generation in Photonic Waveguides. , 2017, Physical review letters.

[15]  Ming Xin,et al.  Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 μm to beyond 2.4 μm , 2017, Light: Science & Applications.

[16]  M. Gorodetsky,et al.  Dissipative Kerr solitons in optical microresonators , 2015, Science.

[17]  R. Schlesser,et al.  Optical nonlinear and electro‐optical coefficients in bulk aluminium nitride single crystals , 2017 .

[18]  M. Murnane,et al.  High-harmonic generation in periodically poled waveguides , 2017, 1708.06836.

[19]  Lai Wang,et al.  Integrated continuous-wave aluminum nitride Raman laser , 2017 .

[20]  K. Srinivasan,et al.  Ultrabroadband Supercontinuum Generation and Frequency-Comb Stabilization Using On-Chip Waveguides with Both Cubic and Quadratic Nonlinearities , 2017, 1704.03908.

[21]  K. Vahala,et al.  Coherent ultra-violet to near-infrared generation in silica ridge waveguides , 2017, Nature Communications.

[22]  K. Luo,et al.  Quantum Frequency Conversion between Infrared and Ultraviolet , 2016, 1610.03239.

[23]  M. De Micheli,et al.  Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks , 2016, Scientific Reports.

[24]  T. Hänsch,et al.  Doppler Cooling Trapped Ions with a UV Frequency Comb. , 2016, Physical review letters.

[25]  Rajeev J Ram,et al.  Integrated optical addressing of an ion qubit. , 2015, Nature nanotechnology.

[26]  A. Klenner,et al.  Femtosecond mode locking based on adiabatic excitation of quadratic solitons , 2015 .

[27]  Federico Belli,et al.  Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber , 2015 .

[28]  G. K. L. Wong,et al.  Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre , 2015, Nature Photonics.

[29]  H. Tang,et al.  Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator , 2014, 1410.5018.

[30]  F. Kärtner,et al.  Highly efficient broadband sum-frequency generation in the visible wavelength range. , 2014, Optics letters.

[31]  A. Arie,et al.  Adiabatic processes in frequency conversion , 2014 .

[32]  A. Ludlow,et al.  An Atomic Clock with 10–18 Instability , 2013, Science.

[33]  T. Hänsch,et al.  A deep-UV optical frequency comb at 205 nm. , 2009, Optics express.

[34]  S. A. van den Berg,et al.  Direct frequency comb spectroscopy of trapped ions , 2008, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[35]  Lionel Provost,et al.  Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers , 2008 .

[36]  Y. Silberberg,et al.  Geometrical representation of sum frequency generation and adiabatic frequency conversion , 2008, 0805.1517.

[37]  Johannes Orphal,et al.  Incoherent broadband cavity-enhanced absorption spectroscopy in the near-ultraviolet: application to HONO and NO2. , 2008, Environmental science & technology.

[38]  G. Agrawal Chapter 11 – Highly Nonlinear Fibers , 2006 .

[39]  Thomas Udem,et al.  A frequency comb in the extreme ultraviolet , 2005, Nature.

[40]  Robert P. H. Chang,et al.  Detection of chemical species using ultraviolet microdisk lasers , 2004 .

[41]  S G Demos,et al.  Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms. , 2003, Physical review letters.

[42]  John M Dudley,et al.  Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers. , 2002, Optics letters.

[43]  T. Hänsch,et al.  Optical frequency metrology , 2002, Nature.

[44]  D. Milam Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica. , 1998, Applied optics.

[45]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .