Structure affecting dissociation energy in polycyclic aromatic hydrocarbon ions

[1]  P. Mayer,et al.  Why Do Large Ionized Polycyclic Aromatic Hydrocarbons Not Lose C2H2? , 2019, The journal of physical chemistry. A.

[2]  C. Joblin,et al.  Unimolecular reaction energies for polycyclic aromatic hydrocarbon ions. , 2018, Physical chemistry chemical physics : PCCP.

[3]  C. Joblin,et al.  Investigating the importance of edge-structure in the loss of H/H2 of PAH cations: the case of dibenzopyrene isomers. , 2017, International journal of mass spectrometry.

[4]  J. V. van Bokhoven,et al.  Understanding the mechanism of catalytic fast pyrolysis by unveiling reactive intermediates in heterogeneous catalysis , 2017, Nature Communications.

[5]  C. Joblin,et al.  VUV PHOTO-PROCESSING OF PAH CATIONS: QUANTITATIVE STUDY ON THE IONIZATION VERSUS FRAGMENTATION PROCESSES , 2016, The Astrophysical journal.

[6]  C. Joblin,et al.  Photoionization of cold gas phase coronene and its clusters: autoionization resonances in monomer, dimer, and trimer and electronic structure of monomer cation. , 2014, The Journal of chemical physics.

[7]  C. Joblin,et al.  Dissociation of the anthracene radical cation: a comparative look at iPEPICO and collision-induced dissociation mass spectrometry results. , 2014, The journal of physical chemistry. A.

[8]  C. Joblin,et al.  Photodissociation of pyrene cations: structure and energetics from C16H10(+) to C14(+) and almost everything in between. , 2014, The journal of physical chemistry. A.

[9]  C. Joblin,et al.  Dynamics of hydrogen and methyl radical loss from ionized dihydro-polycyclic aromatic hydrocarbons: a tandem mass spectrometry and imaging photoelectron-photoion coincidence (iPEPICO) study of dihydronaphthalene and dihydrophenanthrene. , 2014, The journal of physical chemistry. A.

[10]  C. Joblin,et al.  On the dissociation of the naphthalene radical cation: new iPEPICO and tandem mass spectrometry results. , 2012, The journal of physical chemistry. A.

[11]  T. Gerber,et al.  A new double imaging velocity focusing coincidence experiment: i2PEPICO. , 2012, The Review of scientific instruments.

[12]  C. Joblin,et al.  PAHs and the Universe: A Symposium to Celebrate the 25th Anniversary of the PAH Hypothesis , 2011 .

[13]  E. Peeters The PAH Hypothesis after 25 Years , 2011, Proceedings of the International Astronomical Union.

[14]  A. Bodi,et al.  Modeling unimolecular reactions in photoelectron photoion coincidence experiments. , 2010, Journal of mass spectrometry : JMS.

[15]  C. Joblin,et al.  Visible photodissociation spectroscopy of PAH cations and derivatives in the PIRENEA experiment , 2010, 1003.4006.

[16]  T. Gerber,et al.  Data acquisition schemes for continuous two-particle time-of-flight coincidence experiments. , 2007, The Review of scientific instruments.

[17]  C. Joblin,et al.  Vibrations and thermodynamics of clusters of polycyclic aromatic hydrocarbon molecules: the role of internal modes. , 2007, The journal of physical chemistry. A.

[18]  B. Sztáray,et al.  Suppression of hot electrons in threshold photoelectron photoion coincidence spectroscopy using velocity focusing optics , 2003 .

[19]  C. Lifshitz,et al.  Time-Resolved Photodissociation (TRPD) of the Naphthalene and Azulene Cations in an Ion Trap/Relfectron , 2000 .

[20]  Farid Salama,et al.  Polycyclic Aromatic Hydrocarbons and the Diffuse Interstellar Bands: A Survey , 2011, The Astrophysical journal.

[21]  Y. Ling,et al.  TIME-DEPENDENT MASS SPECTRA AND BREAKDOWN GRAPHS. 21. C14H10 ISOMERS , 1998 .

[22]  C. Lifshitz Energetics and dynamics through time-resolved measurements in mass spectrometry: Aromatic hydrocarbons, polycyclic aromatic hydrocarbons and fullerenes , 1997 .

[23]  Tomas Baercor,et al.  Statistical Rice-Ramsperger-Kassel-Marcus quasiequilibrium theory calculations in mass spectrometry , 1997 .

[24]  Y. Ling,et al.  Energetics of Acetylene Loss from C14H10•+ Cations: A Density Functional Calculation , 1997 .

[25]  Y. Ling,et al.  Plasmon excitation in polycyclic aromatic hydrocarbons studied by photoionization , 1996 .

[26]  A. Tielens,et al.  Assessment of the polycyclic aromatic hydrocarbon-diffuse interstellar band proposal. , 1996, The Astrophysical journal.

[27]  W. Hase,et al.  Unimolecular reaction dynamics : theory and experiments , 1996 .

[28]  R. Dunbar,et al.  RADIATIVE ASSOCIATION KINETICS OF METHYL-SUBSTITUTED BENZENE IONS , 1995 .

[29]  Y. Ling,et al.  Time-Dependent Mass Spectra and Breakdown Graphs. 19. Fluoranthene , 1995 .

[30]  Y. Ho,et al.  C-H Bond Strength of Naphthalene Ion. A Reevaluation Using New Time-Resolved Photodissociation Results , 1995 .

[31]  Y. Ling,et al.  Time-Dependent Mass Spectra and Breakdown Graphs. 18. Pyrene , 1995 .

[32]  M. Naor,et al.  Time-dependent mass spectra and breakdown graphs. 17. Naphthalene and phenanthrene , 1993 .

[33]  R. Dunbar Time-resolved unimolecular dissociation of styrene ion: rates and activation parameters , 1989 .

[34]  A. Tielens,et al.  Infrared Emission from Interstellar PAHs , 1987 .

[35]  Alexander G. G. M. Tielens,et al.  Polycyclic aromatic hydrocarbons and the unidentified infrared emission bands - Auto exhaust along the Milky Way , 1985 .

[36]  J. Puget,et al.  Identification of the 'unidentified' IR emission features of interstellar dust? , 1984 .

[37]  W. Schmidt Photoelectron spectra of polynuclear aromatics. V. Correlations with ultraviolet absorption spectra in the catacondensed series , 1977 .

[38]  R. Dunbar,et al.  Photodissociation spectroscopy of methylnaphthalene cations and the state assignment of naphthalene ions , 1976 .

[39]  Terry Beyer,et al.  Algorithm 448: number of multiply-restricted partitions , 1973, CACM.