AHF: array-based half-facet data structure for mixed-dimensional and non-manifold meshes
暂无分享,去创建一个
Timothy J. Tautges | Xiangmin Jiao | Daniel R. Einstein | Navamita Ray | Vladimir Dyedov | T. Tautges | X. Jiao | D. Einstein | Navamita Ray | Vladimir Dyedov
[1] Leif Kobbelt,et al. OpenMesh: A Generic and Efficient Polygon Mesh Data Structure , 2002 .
[2] Timothy J. Tautges,et al. MOAB : a mesh-oriented database. , 2004 .
[3] Xiangmin Jiao,et al. Compact Array-Based Mesh Data Structures , 2005, IMR.
[4] Mark de Berg,et al. Computational geometry: algorithms and applications, 3rd Edition , 1997 .
[5] Geert-Jan Giezeman,et al. On the design of CGAL a computational geometry algorithms library , 2000 .
[6] Mario Botsch,et al. Design, Implementation, and Evaluation of the Surface_mesh Data Structure , 2011, IMR.
[7] A. D. Gosman,et al. Error Analysis of the Finite-Volume Method with Respect to Mesh Type , 2010 .
[8] Geert-Jan Giezeman,et al. On the design of CGAL a computational geometry algorithms library , 2000, Softw. Pract. Exp..
[9] Lutz Kettner,et al. Using generic programming for designing a data structure for polyhedral surfaces , 1999, Comput. Geom..
[10] Hang Si,et al. TetGen: A quality tetrahedral mesh generator and a 3D Delaunay triangulator (Version 1.5 --- User's Manual) , 2013 .
[11] William Roshan Quadros,et al. Proceedings of the 20th International Meshing Roundtable , 2012 .
[12] Xiangmin Jiao,et al. Variational generation of prismatic boundary‐layer meshes for biomedical computing , 2009, International journal for numerical methods in engineering.
[13] Carlo Cattani,et al. Dimension-independent modeling with simplicial complexes , 1993, TOGS.
[14] Guy E. Blelloch,et al. Compact representations of simplicial meshes in two and three dimensions , 2005, Int. J. Comput. Geom. Appl..
[15] Mark S. Shephard,et al. a General Topology-Based Mesh Data Structure , 1997 .
[16] Andrew Vince,et al. Combinatorial maps , 1983, J. Comb. Theory, Ser. B.
[17] Leila De Floriani,et al. IA*: An adjacency-based representation for non-manifold simplicial shapes in arbitrary dimensions , 2011, Comput. Graph..
[18] Francis Y. Enomoto,et al. THE CGNS SYSTEM , 1998 .
[19] Mark de Berg,et al. Computational geometry: algorithms and applications , 1997 .
[20] Benjamin S. Kirk,et al. Library for Parallel Adaptive Mesh Refinement / Coarsening Simulations , 2006 .
[21] David P. Dobkin,et al. Primitives for the manipulation of three-dimensional subdivisions , 1987, SCG '87.
[22] David R. Musser,et al. Fmdb: flexible distributed mesh database for parallel automated adaptive analysis , 2005 .
[23] David Bommes,et al. OpenVolumeMesh - A Versatile Index-Based Data Structure for 3D Polytopal Complexes , 2012, IMR.
[24] Rao V. Garimella,et al. MSTK - A Flexible Infrastructure Library for Developing Mesh Based Applications , 2004, IMR.