Unpacking Pandora from Its Box: Deciphering the Molecular Basis of the SARS-CoV-2 Coronavirus

An enigmatic localized pneumonia escalated into a worldwide COVID-19 pandemic from Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). This review aims to consolidate the extensive biological minutiae of SARS-CoV-2 which requires decipherment. Having one of the largest RNA viral genomes, the single strand contains the genes ORF1ab, S, E, M, N and ten open reading frames. Highlighting unique features such as stem-loop formation, slippery frameshifting sequences and ribosomal mimicry, SARS-CoV-2 represents a formidable cellular invader. Hijacking the hosts translational engine, it produces two polyprotein repositories (pp1a and pp1ab), armed with self-cleavage capacity for production of sixteen non-structural proteins. Novel glycosylation sites on the spike trimer reveal unique SARS-CoV-2 features for shielding and cellular internalization. Affording complexity for superior fitness and camouflage, SARS-CoV-2 challenges diagnosis and vaccine vigilance. This review serves the scientific community seeking in-depth molecular details when designing drugs to curb transmission of this biological armament.

[1]  B. Sawaya,et al.  Why do SARS-CoV-2 NSPs rush to the ER? , 2020, Journal of Neurology.

[2]  M. Ciccozzi,et al.  Emerging of a SARS-CoV-2 viral strain with a deletion in nsp1 , 2020, Journal of translational medicine.

[3]  Dongqing Wei,et al.  SARS-CoV-2 nucleocapsid and Nsp3 binding: an in silico study , 2020, Archives of Microbiology.

[4]  V. Chechetkin,et al.  Ribonucleocapsid assembly/packaging signals in the genomes of the coronaviruses SARS-CoV and SARS-CoV-2: detection, comparison and implications for therapeutic targeting , 2020, Journal of biomolecular structure & dynamics.

[5]  M. Gorrell Faculty Opinions recommendation of Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. , 2020, Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature.

[6]  N. Ban,et al.  SARS-CoV-2 Nsp1 binds ribosomal mRNA channel to inhibit translation , 2020, bioRxiv.

[7]  S. Rowland-Jones,et al.  Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus , 2020, Cell.

[8]  G. Gao,et al.  Structural and Biochemical Characterization of the nsp12-nsp7-nsp8 Core Polymerase Complex from SARS-CoV-2 , 2020, Cell Reports.

[9]  S. Tokajian,et al.  SARS-CoV-2 and ORF3a: Nonsynonymous Mutations, Functional Domains, and Viral Pathogenesis , 2020, mSystems.

[10]  M. Scotch,et al.  An 81-Nucleotide Deletion in SARS-CoV-2 ORF7a Identified from Sentinel Surveillance in Arizona (January to March 2020) , 2020, Journal of Virology.

[11]  Benjamin J. Polacco,et al.  A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug-Repurposing , 2020, Nature.

[12]  S. Sinha,et al.  An in-silico evaluation of different Saikosaponins for their potency against SARS-CoV-2 using NSP15 and fusion spike glycoprotein as targets , 2020, Journal of biomolecular structure & dynamics.

[13]  M. U. Mirza,et al.  Structural elucidation of SARS-CoV-2 vital proteins: Computational methods reveal potential drug candidates against main protease, Nsp12 polymerase and Nsp13 helicase , 2020, Journal of Pharmaceutical Analysis.

[14]  Salma Jamal,et al.  Emerging genetic diversity among clinical isolates of SARS-CoV-2: Lessons for today , 2020, Infection, Genetics and Evolution.

[15]  Joy Y. Feng,et al.  Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency , 2020, The Journal of Biological Chemistry.

[16]  S. Sarafianos,et al.  Feasibility of Known RNA Polymerase Inhibitors as Anti-SARS-CoV-2 Drugs , 2020, Pathogens.

[17]  E. Decroly,et al.  Remdesivir and SARS-CoV-2: Structural requirements at both nsp12 RdRp and nsp14 Exonuclease active-sites , 2020, Antiviral Research.

[18]  M. Clerici,et al.  Computational Inference of Selection Underlying the Evolution of the Novel Coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2 , 2020, Journal of Virology.

[19]  J. Rossjohn,et al.  Crystal Structure of the SARS-CoV-2 Non-structural Protein 9, Nsp9 , 2020, bioRxiv.

[20]  Hongzhu Cui,et al.  Structural Genomics of SARS-CoV-2 Indicates Evolutionary Conserved Functional Regions of Viral Proteins , 2020, Viruses.

[21]  W. Ko,et al.  Global epidemiology of coronavirus disease 2019 (COVID-19): disease incidence, daily cumulative index, mortality, and their association with country healthcare resources and economic status , 2020, International Journal of Antimicrobial Agents.

[22]  Hyeshik Chang,et al.  The Architecture of SARS-CoV-2 Transcriptome , 2020, Cell.

[23]  A. Liñán-Rico,et al.  An exclusive 42 amino acid signature in pp1ab protein provides insights into the evolutive history of the 2019 novel human‐pathogenic coronavirus (SARS‐CoV‐2) , 2020, Journal of medical virology.

[24]  M. Kandeel,et al.  From SARS and MERS CoVs to SARS‐CoV‐2: Moving toward more biased codon usage in viral structural and nonstructural genes , 2020, Journal of medical virology.

[25]  J Zhang,et al.  [Novel coronavirus pneumonia (COVID-19) CT distribution and sign features]. , 2020, Zhonghua jie he he hu xi za zhi = Zhonghua jiehe he huxi zazhi = Chinese journal of tuberculosis and respiratory diseases.

[26]  A. M. Leontovich,et al.  The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2 , 2020, Nature Microbiology.

[27]  Bernhard Liebl,et al.  Rapid establishment of laboratory diagnostics for the novel coronavirus SARS-CoV-2 in Bavaria, Germany, February 2020 , 2020, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[28]  Yan Bai,et al.  Presumed Asymptomatic Carrier Transmission of COVID-19. , 2020, JAMA.

[29]  S. Pascarella,et al.  COVID‐2019: The role of the nsp2 and nsp3 in its pathogenesis , 2020, Journal of medical virology.

[30]  B. Canard,et al.  The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade , 2020, Antiviral Research.

[31]  Kai Zhao,et al.  A pneumonia outbreak associated with a new coronavirus of probable bat origin , 2020, Nature.

[32]  Ralph S. Baric,et al.  Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus , 2020, Journal of Virology.

[33]  Lisa E. Gralinski,et al.  Return of the Coronavirus: 2019-nCoV , 2020, Viruses.

[34]  G. Gao,et al.  A Novel Coronavirus from Patients with Pneumonia in China, 2019 , 2020, The New England journal of medicine.

[35]  K. To,et al.  Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan , 2020, Emerging microbes & infections.

[36]  R. Hilgenfeld,et al.  Processing of the SARS-CoV pp1a/ab nsp7–10 region , 2019, bioRxiv.

[37]  James A. Foster,et al.  HIV Vaccine Mystery and Viral Shell Disorder , 2019, Biomolecules.

[38]  Xiaotao Lu,et al.  Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease , 2018, mBio.

[39]  Jordi Gómez,et al.  Viral tRNA Mimicry from a Biocommunicative Perspective , 2017, Front. Microbiol..

[40]  Vineet D. Menachery,et al.  Jumping species—a mechanism for coronavirus persistence and survival , 2017, Current Opinion in Virology.

[41]  T. Maran Mimicry and Meaning: Structure and Semiotics of Biological Mimicry , 2017 .

[42]  S. Yokoyama,et al.  SARS-CoV 3CL protease cleaves its C-terminal autoprocessing site by novel subsite cooperativity , 2016, Proceedings of the National Academy of Sciences.

[43]  Fang Li,et al.  Structure, Function, and Evolution of Coronavirus Spike Proteins. , 2016, Annual review of virology.

[44]  Mogens Kilstrup,et al.  Naturalizing semiotics: The triadic sign of Charles Sanders Peirce as a systems property. , 2015, Progress in biophysics and molecular biology.

[45]  Sandra Postel,et al.  Severe Acute Respiratory Syndrome Coronavirus ORF7a Inhibits Bone Marrow Stromal Antigen 2 Virion Tethering through a Novel Mechanism of Glycosylation Interference , 2015, Journal of Virology.

[46]  Ying Sun,et al.  Coronavirus nsp10/nsp16 Methyltransferase Can Be Targeted by nsp10-Derived Peptide In Vitro and In Vivo To Reduce Replication and Pathogenesis , 2015, Journal of Virology.

[47]  M. Denison,et al.  Mutations across Murine Hepatitis Virus nsp4 Alter Virus Fitness and Membrane Modifications , 2014, Journal of Virology.

[48]  E. Decroly,et al.  One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities , 2014, Proceedings of the National Academy of Sciences.

[49]  B. Fielding,et al.  The Coronavirus Nucleocapsid Is a Multifunctional Protein , 2014, Viruses.

[50]  S. Falke,et al.  Coronaviral Polyprotein Nsp7-10 : Proteolytic Processing and Dynamic Interactions within the Transcriptase/Replicase Complex , 2014 .

[51]  A. Mesecar,et al.  Chimeric Exchange of Coronavirus nsp5 Proteases (3CLpro) Identifies Common and Divergent Regulatory Determinants of Protease Activity , 2013, Journal of Virology.

[52]  Tamir Tuller,et al.  Determinants of Translation Elongation Speed and Ribosomal Profiling Biases in Mouse Embryonic Stem Cells , 2012, PLoS Comput. Biol..

[53]  R. Ketteler On programmed ribosomal frameshifting: the alternative proteomes , 2012, Front. Gene..

[54]  K. Walters,et al.  An Overlapping Protein-Coding Region in Influenza A Virus Segment 3 Modulates the Host Response , 2012, Science.

[55]  Bruno Canard,et al.  RNA 3'-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex , 2012, Proceedings of the National Academy of Sciences.

[56]  C. Machamer,et al.  The Coronavirus E Protein: Assembly and Beyond , 2012, Viruses.

[57]  R. Baric,et al.  Yeast Based Small Molecule Screen for Inhibitors of SARS-CoV , 2011, PloS one.

[58]  P. Rottier,et al.  Mobility and Interactions of Coronavirus Nonstructural Protein 4 , 2011, Journal of Virology.

[59]  E. Decroly,et al.  Molecular Mapping of the RNA Cap 2′-O-Methyltransferase Activation Interface between Severe Acute Respiratory Syndrome Coronavirus nsp10 and nsp16* , 2010, The Journal of Biological Chemistry.

[60]  Bruno Canard,et al.  In Vitro Reconstitution of SARS-Coronavirus mRNA Cap Methylation , 2010, PLoS pathogens.

[61]  P. D. Nagy,et al.  Defective Interfering RNAs: Foes of Viruses and Friends of Virologists , 2009, Viruses.

[62]  S. Tsui,et al.  The ion channel activity of the SARS-coronavirus 3a protein is linked to its pro-apoptotic function , 2009, The International Journal of Biochemistry & Cell Biology.

[63]  Ralph S. Baric,et al.  Severe Acute Respiratory Syndrome Coronavirus nsp9 Dimerization Is Essential for Efficient Viral Growth , 2009, Journal of Virology.

[64]  P. Rottier,et al.  Topology and Membrane Anchoring of the Coronavirus Replication Complex: Not All Hydrophobic Domains of nsp3 and nsp6 Are Membrane Spanning , 2008, Journal of Virology.

[65]  P. Rottier,et al.  The 29-Nucleotide Deletion Present in Human but Not in Animal Severe Acute Respiratory Syndrome Coronaviruses Disrupts the Functional Expression of Open Reading Frame 8 , 2007, Journal of Virology.

[66]  Ralph S. Baric,et al.  Severe Acute Respiratory Syndrome Coronavirus ORF6 Antagonizes STAT1 Function by Sequestering Nuclear Import Factors on the Rough Endoplasmic Reticulum/Golgi Membrane , 2007, Journal of Virology.

[67]  Kin Moy,et al.  Structural Basis of Severe Acute Respiratory Syndrome Coronavirus ADP-Ribose-1″-Phosphate Dephosphorylation by a Conserved Domain of nsP3 , 2005, Structure.

[68]  K. Yuen,et al.  Correction: Design of Wide-Spectrum Inhibitors Targeting Coronavirus Main Proteases , 2005, PLoS Biology.

[69]  Jonathan D Dinman,et al.  A Three-Stemmed mRNA Pseudoknot in the SARS Coronavirus Frameshift Signal , 2005, PLoS biology.

[70]  Pavel V Baranov,et al.  Programmed ribosomal frameshifting in decoding the SARS-CoV genome , 2005, Virology.

[71]  D. Haussler,et al.  The Structure of a Rigorously Conserved RNA Element within the SARS Virus Genome , 2004, PLoS biology.

[72]  Sonia Longhi,et al.  The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[73]  David I Stuart,et al.  The nsp9 Replicase Protein of SARS-Coronavirus, Structure and Functional Insights , 2004, Structure.

[74]  Rolf Hilgenfeld,et al.  Coronavirus Main Proteinase (3CLpro) Structure: Basis for Design of Anti-SARS Drugs , 2003, Science.

[75]  S. Napthine,et al.  Evidence for an RNA pseudoknot loop-helix interaction essential for efficient −1 ribosomal frameshifting 1 , 1999, Journal of Molecular Biology.

[76]  T. Ø. Jonassen,et al.  A common RNA motif in the 3' end of the genomes of astroviruses, avian infectious bronchitis virus and an equine rhinovirus. , 1998, The Journal of general virology.

[77]  J. Herold,et al.  An 'elaborated' pseudoknot is required for high frequency frameshifting during translation of HCV 229E polymerase mRNA. , 1993, Nucleic acids research.

[78]  I. Brierley,et al.  Mutational analysis of the “slippery-sequence” component of a coronavirus ribosomal frameshifting signal , 1992, Journal of Molecular Biology.

[79]  I. Brierley,et al.  Mutational analysis of the RNA pseudoknot component of a coronavirus ribosomal frameshifting signal☆ , 1991, Journal of Molecular Biology.

[80]  I. Brierley,et al.  Characterization of an efficient coronavirus ribosomal frameshifting signal: Requirement for an RNA pseudoknot , 1989, Cell.

[81]  H. Varmus,et al.  Characterization of ribosomal frameshifting in HIV-1 gag-pol expression , 1988, Nature.

[82]  D. Fremont,et al.  Structure, Expression, and Intracellular Localization of the SARS-CoV Accessory Proteins 7a and 7b , 2006, Advances in experimental medicine and biology.

[83]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[84]  M. Mayo,et al.  Virus Taxonomy , 1995, Archives of Virology Supplement 10.