The filtering of transitory noise in earnings numbers

This paper applies the Kalman filtering procedure to estimate persistent and transitory noise components of accounting earnings. Designating the transitory noise component separately (under a label such as extraordinary items) in financial reports should help users predict future earnings. If a firm has no foreknowledge of future earnings, managers can apply a filter to a firm's accounting earnings more efficiently than an interested user. If management has foreknowledge of earnings, application of a filtering algorithm can result in smoothed variables that convey information otherwise not available to users. Application of a filtering algorithm to a sample of firms revealed that a substantial number of firms exhibited a significant transitory noise component of earnings. Also, for those firms whose earnings exhibited a significant departure from the random walk process, the paper shows that filtering can be fruitfully applied to improve predictive ability.