The XMM-Newton Wide-Field Survey in the COSMOS Field. III. Optical Identification and Multiwavelength Properties of a Large Sample of X-Ray-Selected Sources

We present the optical identification of a sample of 695 X-ray sources detected in the first 1.3 deg2 of the COSMOS XMM-Newton survey, down to a 0.5-2 keV (2-10 keV) limiting flux of ~10-15 erg cm-2 s-1 (~5 × 10-15 erg cm-2 s-1). In order to identify the correct optical counterparts and to assess the statistical significance of the X-ray-to-optical associations we have used the "likelihood ratio technique." Here we present the identification method and its application to the CFHT I-band and photometric catalogs. We were able to associate a candidate optical counterpart to ~90% (626) of the X-ray sources, while for the remaining ~10% of the sources we were not able to provide a unique optical association due to the faintness of the possible optical counterparts (IAB > 25) or to the presence of multiple optical sources, with similar likelihoods of being the correct identification, within the XMM-Newton error circles. We also cross-correlated the candidate optical counterparts with the Subaru multicolor and ACS catalogs and with the Magellan/IMACS, zCOSMOS, and literature spectroscopic data; the spectroscopic sample comprises 248 objects (~40% of the full sample). Our analysis of this statistically meaningful sample of X-ray sources reveals that for ~80% of the counterparts there is a very good agreement between the spectroscopic classification, the morphological parameters as derived from ACS data, and the optical-to-near-infrared colors: the large majority of spectroscopically identified broad-line active galactic nuclei (BL AGNs) have a pointlike morphology on ACS data, blue optical colors in color-color diagrams, and an X-ray-to-optical flux ratio typical of optically selected quasars. Conversely, sources classified as narrow line AGNs or normal galaxies are on average associated with extended optical sources, have significantly redder optical-to-near-infrared colors, and span a larger range of X-ray-to-optical flux ratios. However, about 20% of the sources show an apparent mismatch between the morphological and spectroscopic classifications. All the "extended" BL AGNs lie at redshift <1.5, while the redshift distribution of the full BL AGN population peaks at z ~ 1.5. The most likely explanation is that in these objects the nuclear emission is not dominant with respect to the host galaxy emission in the observed ACS band. Our analysis also suggests that the type 2/type 1 ratio decreases toward high luminosities, in qualitative agreement with the results from X-ray spectral analysis and the most recent modeling of the X-ray luminosity function evolution.

[1]  D. Thompson,et al.  The Angular Correlations of Galaxies in the COSMOS Field , 2007, 0704.2545.

[2]  D. Calzetti,et al.  The COSMOS Survey: Hubble Space Telescope Advanced Camera for Surveys Observations and Data Processing , 2007, astro-ph/0703095.

[3]  Cea,et al.  Weak Gravitational Lensing with COSMOS: Galaxy Selection and Shape Measurements , 2007, astro-ph/0702359.

[4]  J. Trump,et al.  The XMM-Newton Wide-Field Survey in the COSMOS Field. IV. X-Ray Spectral Properties of Active Galactic Nuclei , 2006, astro-ph/0612361.

[5]  D. Calzetti,et al.  COSMOS: Hubble Space Telescope Observations , 2006, astro-ph/0612306.

[6]  P. Ciliegi,et al.  The HELLAS2XMM survey: VIII. Optical identifications of the extended sample. ⋆ , 2006, astro-ph/0612023.

[7]  A. Comastri,et al.  The synthesis of the cosmic X-ray background in the Chandra and XMM-Newton era , 2006, astro-ph/0610939.

[8]  J. Trump,et al.  The XMM-Newton Wide-Field Survey in the COSMOS Field: Statistical Properties of Clusters of Galaxies , 2006, astro-ph/0612360.

[9]  L. Guzzo,et al.  The Cosmic Evolution Survey (COSMOS): Overview* , 2006, astro-ph/0612305.

[10]  S. Maddox,et al.  zCOSMOS: A Large VLT/VIMOS Redshift Survey Covering 0 < z < 3 in the COSMOS Field , 2006, astro-ph/0612291.

[11]  S. Kitsionas,et al.  XMM-Newton and Chandra measurements of the AGN intrinsic absorption: dependence on luminosity and redshift , 2006, astro-ph/0606438.

[12]  M. C. Cooper,et al.  A deep Chandra survey of the Groth Strip – II. Optical identification of the X‐ray sources , 2006, astro-ph/0606139.

[13]  J. Trump,et al.  Magellan Spectroscopy of AGN Candidates in the COSMOS Field , 2006, astro-ph/0606016.

[14]  I. Strateva,et al.  The X-Ray-to-Optical Properties of Optically Selected Active Galaxies over Wide Luminosity and Redshift Ranges , 2006, astro-ph/0602407.

[15]  Arjun Dey,et al.  The Chandra XBoötes Survey. III. Optical and Near-Infrared Counterparts , 2005, astro-ph/0512343.

[16]  P. Ciliegi,et al.  The HELLAS2XMM Survey. VII. The Hard X-Ray Luminosity Function of AGNs up to z = 4: More Absorbed AGNs at Low Luminosities and High Redshifts , 2005, astro-ph/0509081.

[17]  T. Dwelly,et al.  XMM-Newton 13H deep field — I. X-ray sources , 2005, astro-ph/0507408.

[18]  G. Hasinger,et al.  Luminosity-dependent evolution of soft X-ray selected AGN : New Chandra and XMM-Newton surveys , 2005, astro-ph/0506118.

[19]  C. Kochanek,et al.  XBootes: An X-Ray Survey of the NDWFS Bootes Field. I. Overview and Initial Results , 2005, astro-ph/0504084.

[20]  M. Nonino,et al.  The Chandra deep field South/GOODS survey. Optically faint X-ray sources , 2005, astro-ph/0502542.

[21]  T. D. Matteo,et al.  Energy input from quasars regulates the growth and activity of black holes and their host galaxies , 2005, Nature.

[22]  W. Brandt,et al.  DEEP EXTRAGALACTIC X-RAY SURVEYS , 2005, astro-ph/0501058.

[23]  P. Capak,et al.  The Cosmic Evolution of Hard X-Ray-selected Active Galactic Nuclei , 2004, astro-ph/0410527.

[24]  A. Cimatti,et al.  XMM-Newton observations of Extremely Red Objects and the link with luminous, X-ray obscured Quasars , 2004, astro-ph/0409257.

[25]  J. Silverman,et al.  Comoving Space Density of X-Ray-selected Active Galactic Nuclei , 2004, astro-ph/0406330.

[26]  C. Megan Urry,et al.  Obscured Active Galactic Nuclei and the X-Ray, Optical, and Far-Infrared Number Counts of Active Galactic Nuclei in the GOODS Fields , 2004 .

[27]  R. Bender,et al.  The Star Formation Rate History in the FORS Deep and GOODS-South Fields , 2004, astro-ph/0409515.

[28]  P. Capak,et al.  An Optical Catalog of the Chandra Large Area Synoptic X-Ray Survey Sources , 2004, astro-ph/0409088.

[29]  D. Helfand,et al.  The Serendipitous Extragalactic X-Ray Source Identification (SEXSI) Program. II. Optical Imaging , 2004, astro-ph/0409012.

[30]  Cambridge,et al.  Infrared Number Counts of AGN in the GOODS Fields , 2004, astro-ph/0408099.

[31]  M. J. Page,et al.  Exploring the X-ray sky with the XMM-Newton bright serendipitous survey , 2004, astro-ph/0407481.

[32]  S. Kitsionas,et al.  The XMM Newton/2dF Survey - IV. The X-ray spectral properties of the hard sources , 2004, astro-ph/0404048.

[33]  A. Merloni The anti‐hierarchical growth of supermassive black holes , 2004, astro-ph/0402495.

[34]  M. Mignoli,et al.  The HELLAS2XMM survey V. Near-Infrared observations of X-ray sources with extreme X/O ratios , 2004, astro-ph/0401298.

[35]  N. Menci,et al.  X-Ray Evolution of Active Galactic Nuclei and Hierarchical Galaxy Formation , 2004, astro-ph/0401261.

[36]  L. Kewley,et al.  The Chandra Deep Field-South: Optical Spectroscopy. I. , 2003, astro-ph/0312324.

[37]  R. Maiolino,et al.  Local supermassive black holes, relics of active galactic nuclei and the X-ray background , 2003, astro-ph/0311619.

[38]  G. Hasinger The X-ray background and AGNs , 2003, astro-ph/0310804.

[39]  P. Martini,et al.  Coevolution of Black Holes and Galaxies , 2004 .

[40]  Timothy M. Heckman,et al.  The host galaxies of active galactic nuclei , 2003 .

[41]  H. Tananbaum,et al.  The Chandra Multiwavelength Project: Optical Follow-up of Serendipitous Chandra Sources , 2003, astro-ph/0308506.

[42]  Takamitsu Miyaji,et al.  Cosmological Evolution of the Hard X-Ray Active Galactic Nucleus Luminosity Function and the Origin of the Hard X-Ray Background , 2003, astro-ph/0308140.

[43]  P. Ciliegi,et al.  The HELLAS2XMM survey IV. Optical identifications and the evolution of the accretion luminosity in the Universe , 2003, astro-ph/0306556.

[44]  S. M. Fall,et al.  A Possible New Population of Sources with Extreme X-Ray/Optical Ratios , 2003, astro-ph/0306407.

[45]  D. M. Alexander,et al.  Optical and Infrared Properties of the 2 Ms Chandra Deep Field North X-Ray Sources , 2003, astro-ph/0306212.

[46]  D. M. Alexander,et al.  The Chandra Deep Field North Survey. XIII. 2 Ms Point-Source Catalogs , 2003, astro-ph/0304392.

[47]  J. Brinkmann,et al.  The Host Galaxies of AGN , 2003, astro-ph/0304239.

[48]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[49]  Garching,et al.  A deep VLA survey at 6 cm in the Lockman Hole , 2002, astro-ph/0211625.

[50]  W. Brandt,et al.  X-Ray Emission from Radio-Quiet Quasars in the Sloan Digital Sky Survey Early Data Release: The αox Dependence upon Ultraviolet Luminosity , 2002, astro-ph/0211125.

[51]  R. Chornock,et al.  “Hidden” Seyfert 2 Galaxies and the X-Ray Background , 2002, astro-ph/0210047.

[52]  European Southern Observatory,et al.  XMM-Newton observation of the Lockman Hole - II. Spectral analysis , 2002, astro-ph/0207166.

[53]  S. Tremaine,et al.  Observational constraints on growth of massive black holes , 2002, astro-ph/0203082.

[54]  M. Mignoli,et al.  The HELLAS2XMM Survey. II. Multiwavelength Observations of P3: An X-Ray-bright, Optically Inactive Galaxy , 2002, astro-ph/0202080.

[55]  G. Zamorani,et al.  Most Supermassive Black Holes Must Be Rapidly Rotating , 2001, astro-ph/0112413.

[56]  Roberto Gilmozzi,et al.  Chandra Deep Field South: The 1 Ms Catalog , 2002 .

[57]  W. Brandt,et al.  The Chandra Deep Field North Survey. VI. The Nature of the Optically Faint X-Ray Source Population , 2001, astro-ph/0107450.

[58]  A. Szalay,et al.  An Optimal Multihump Filter for Photometric Redshifts , 2001, astro-ph/0106073.

[59]  R. Giacconi,et al.  The ROSAT Deep Survey - VI. X-ray sources and Optical identifications of the Ultra Deep Survey , 2001 .

[60]  P. Hall,et al.  Quasars in the 2MASS Second Incremental Data Release , 2001, astro-ph/0101270.

[61]  S. Cristiani,et al.  Deep Fields , 2001 .

[62]  Ralf Bender,et al.  Black Hole Mass Estimates from Reverberation Mapping and from Spatially Resolved Kinematics , 2000, astro-ph/0007123.

[63]  D. Merritt,et al.  A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[64]  A. Fabian,et al.  The mass density in black holes inferred from the X-ray background , 1999, astro-ph/9901121.

[65]  M. S. Oey,et al.  Atlas of quasar energy distributions , 1994 .

[66]  Will Saunders,et al.  On the likelihood ratio for source identification. , 1992 .

[67]  Richard F. Green,et al.  Quasar evolution derived from the Palomar bright quasar survey and other complete quasar surveys. , 1983 .

[68]  M. Zombeck Handbook of Space Astronomy and Astrophysics , 1982 .

[69]  J. B. Oke Redshifts and Absolute Spectral Energy Distributions of Galaxies in Distant Clusters , 1971 .

[70]  W. Alford,et al.  STRUCTURE OF LOW-LYING STATES IN A = 15 NUCLEI. , 1969 .