Addressing Multicriteria Forest Management With Pareto Frontier Methods: An Application in Portugal

The practice of multicriteria forest management planning is often complicated by the need to explicit a priori goals and preferences of the decisionmaker. This manuscript aims at describing an approach that may take advantage of a posteriori preference modeling to facilitate the specification of the levels of achievement of various objectives in a typical forest management planning framework. The goal is to provide information about nondominated points in the feasible set in the criteria space (FSCS) so that decisionmakers may take advantage of trade-off information. The emphasis is on demonstrating the potential of adaptive search methods to enhance decisions when three or more criteria are considered. The approach combines the use of mathematical programming and interactive decision maps techniques. It is shown how the estimation refinement method may be used to approximate the Pareto frontier of a typical model I linear programming model. It is further shown how the feasible goals method/interactive decision maps method may be used to retrieve a solution selected by stakeholders from interactive decision maps depicting the Pareto frontier. Results are discussed for a large-scale test application encompassing over 1 million ha of cork and holm oak forest ecosystems in southern Portugal. FOR .S CI. ❚(❚):000-000.

[1]  José G. Borges,et al.  A framework for data quality for Mediterranean sustainable ecosystem management , 2004 .

[2]  JoséG. Borges,et al.  A quantitative approach to cork oak forest management , 1997 .

[3]  Francisco Barahona,et al.  Harvest Scheduling Subject to Maximum Area Restrictions: Exploring Exact Approaches , 2005, Oper. Res..

[4]  T. L. Saaty,et al.  The computational algorithm for the parametric objective function , 1955 .

[5]  A. Weintraub,et al.  Forest management challenges for operational researchers , 1998 .

[6]  Miguel Constantino,et al.  A New Mixed-Integer Programming Model for Harvest Scheduling Subject to Maximum Area Restrictions , 2008, Oper. Res..

[7]  Timo Pukkala,et al.  Optimising the management of Scots pine (Pinus sylvestris L.) stands in Spain based on individual-tree models , 2003 .

[8]  D. J. Elzinga,et al.  An algorithm for the bi-criterion integer programming problem , 1986 .

[9]  Mikko Kurttila,et al.  Examining the performance of six heuristic optimisation techniques in different forest planning problems , 2005 .

[10]  Carlos Romero,et al.  Making forestry decisions with multiple criteria: A review and an assessment , 2008 .

[11]  Carlos Romero,et al.  A general structure of achievement function for a goal programming model , 2004, Eur. J. Oper. Res..

[12]  A. M. Geoffrion Proper efficiency and the theory of vector maximization , 1968 .

[13]  Andrea Castelletti,et al.  Visualization-based multi-objective improvement of environmental decision-making using linearization of response surfaces , 2010, Environ. Model. Softw..

[14]  Marc E. McDill,et al.  Harvest Scheduling with Area-Based Adjacency Constraints , 2002, Forest Science.

[15]  José G. Borges,et al.  Combining a decomposition strategy with dynamic programming to solve spatially constrained forest management scheduling problems , 1999 .

[16]  O. L. Chernykh,et al.  Construction of the convex hull of a finite set of points when the computations are approximate , 1990 .

[17]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[18]  H. L. Scheurman,et al.  Techniques for Prescribing Optimal Timber Harvest and Investment Under Different Objectives—Discussion and Synthesis , 1977 .

[19]  Marc E. McDill,et al.  Finding the Efficient Frontier of a Bi-Criteria, Spatially Explicit, Harvest Scheduling Problem , 2006 .

[20]  Marc E. McDill,et al.  Finding efficient harvest schedules under three conflicting objectives. , 2009 .

[21]  Kalyanmoy Deb,et al.  Multiobjective optimization , 1997 .

[22]  Dietmar W. Rose,et al.  A simulation approach for optimal timber management scheduling , 1984 .

[23]  J. Borges,et al.  Addressing collaborative planning methods and tools in forest management , 2007 .

[24]  José G. Borges,et al.  Designing an evolution program for solving integer forest management scheduling models : An application in Portugal , 2001 .

[25]  John Sessions,et al.  Eight heuristic planning techniques applied to three increasingly difficult wildlife planning problems , 2002 .

[26]  V. Bushenkov An iteration method of constructing orthogonal projections of convex polyhedral ets , 1986 .

[27]  H. Moskowitz,et al.  Algorithms for nonlinear integer bicriterion problems , 1989 .

[28]  F. Bravo,et al.  Carbon sequestration in Spanish Mediterranean forests under two management alternatives: a modeling approach , 2008, European Journal of Forest Research.

[29]  Howard M. Hoganson,et al.  Structuring a landscape by forestland classification and harvest scheduling spatial constraints , 2000 .

[30]  Vladimir A. Bushenkov,et al.  Multi-objective water allocation in the Alqueva region , 2010 .

[31]  Kathrin Klamroth,et al.  Pareto navigator for interactive nonlinear multiobjective optimization , 2010, OR Spectr..

[32]  O. L. Chernykh,et al.  Approximating the Pareto-hull of a convex set by polyhedral sets , 1995 .

[33]  Alexander V. Lotov,et al.  Interactive Decision Maps: Approximation and Visualization of Pareto Frontier , 2004 .

[34]  Alexander V. Lotov,et al.  A framework for participatory decision support using Pareto frontier visualization, goal identification and arbitration , 2009, Eur. J. Oper. Res..

[35]  J. G. Borges,et al.  An approach to cork oak forest management planning: a case study in southwestern Portugal , 2010, European Journal of Forest Research.

[36]  L. Lasdon,et al.  On a bicriterion formation of the problems of integrated system identification and system optimization , 1971 .

[37]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[38]  Richard E. Wendell,et al.  Efficiency in multiple objective optimization problems , 1977, Math. Program..

[39]  José G. Borges,et al.  Designing decision support tools for Mediterranean forest ecosystems management: a case study in Portugal , 2005 .

[40]  G. K. Kamenev,et al.  Properties of a method for polyhedral approximation of the feasible criterion set in convex multiobjective problems , 2009, Ann. Oper. Res..