A second order numerical scheme for the solution of the one-dimensional Boussinesq equation

A predictor–corrector (P-C) scheme is applied successfully to a nonlinear method arising from the use of rational approximants to the matrix-exponential term in a three-time level recurrence relation. The resulting nonlinear finite-difference scheme, which is analyzed for local truncation error and stability, is solved using a P-C scheme, in which the predictor and the corrector are explicit schemes of order 2. This scheme is accelerated by using a modification (MPC) in which the already evaluated values are used for the corrector. The behaviour of the P-C/MPC schemes is tested numerically on the Boussinesq equation already known from the bibliography free of boundary conditions. The numerical results are derived for both the bad and the good Boussinesq equation and conclusions from the relevant known results are derived.

[1]  A parametric finite‐difference method for shallow sea waves , 2007 .

[2]  A. G. Bratsos A parametric scheme for the numerical solution of the Boussinesq equation , 2001 .

[3]  I. Bogolubsky,et al.  Some examples of inelastic soliton interaction , 1977 .

[4]  Hugo D. Wahlquist,et al.  Backlund transformation for solutions of the Korteweg-de Vries equation , 1973 .

[5]  D. Diers,et al.  On waves... , 1992, Image--the journal of nursing scholarship.

[6]  A. Fordy APPLICATIONS OF LIE GROUPS TO DIFFERENTIAL EQUATIONS (Graduate Texts in Mathematics) , 1987 .

[7]  Zhaosheng Feng,et al.  Traveling solitary wave solutions to the generalized Boussinesq equation , 2003 .

[8]  A. G. Bratsos,et al.  Linearized numerical schemes for the Boussinesq equation , 2005 .

[9]  M. S. Ismail,et al.  A predictor-corrector scheme for the numerical solution of the Boussinesq equation , 2003 .

[10]  Takayasu Matsuo,et al.  New conservative schemes with discrete variational derivatives for nonlinear wave equations , 2007 .

[11]  Chauncey D. Leake,et al.  British Association for the Advancement of Science , 1953, Science.

[12]  H. P. McKean,et al.  Boussinesq's equation on the circle , 1981 .

[13]  Ryogo Hirota,et al.  Exact N‐soliton solutions of the wave equation of long waves in shallow‐water and in nonlinear lattices , 1973 .

[14]  É. Goursat Le problème de Bäcklund , 1925 .

[15]  J. M. Sanz-Serna,et al.  Pseudospectral method for the “good” Boussinesq equation , 1991 .

[16]  J. Boussinesq,et al.  Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. , 1872 .

[17]  H. El-Zoheiry,et al.  Numerical investigation for the solitary waves interaction of the good& Boussinesq equation , 2003 .

[18]  Finite element Galerkin method for the “good” Boussinesq equation , 1997 .

[19]  A. Wazwaz Construction of soliton solutions and periodic solutions of the Boussinesq equation by the modified decomposition method , 2001 .

[20]  L. Chambers Linear and Nonlinear Waves , 2000, The Mathematical Gazette.

[21]  R. Hirota Exact envelope‐soliton solutions of a nonlinear wave equation , 1973 .

[22]  Athanassios G. Bratsos,et al.  A third order numerical scheme for the two-dimensional sine-Gordon equation , 2007, Math. Comput. Simul..

[23]  Mark J. Ablowitz,et al.  Solitons and the Inverse Scattering Transform , 1981 .

[24]  198 ON THE THEORY OF OSCILLATORY WAVES , 2022 .

[25]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[26]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[27]  J. Nimmo,et al.  The use of Backlund transformations in obtaining N-soliton solutions in Wronskian form , 1984 .

[28]  A. G. Bratsos The solution of the Boussinesq equation using the method of lines , 1998 .

[29]  G. Lamb Elements of soliton theory , 1980 .

[30]  E. H. Twizell Computational methods for partial differential equations , 1984 .

[31]  Annie A. M. Cuyt,et al.  On the fast solution of Toeplitz-block linear systems arising in multivariate approximation theory , 2006, Numerical Algorithms.

[32]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[33]  P. Allen,et al.  Tides and Waves , 2009 .

[34]  Wei Hua,et al.  A numerical study of an ill-posed Boussinesq equation arising in water waves and nonlinear lattices: Filtering and regularization techniques , 1999, Appl. Math. Comput..

[35]  J. Francis Tides and Waves , 1969, Nature.

[36]  J. Nimmo,et al.  A method of obtaining the N-soliton solution of the Boussinesq equation in terms of a wronskian , 1983 .

[37]  W. Malfliet Solitary wave solutions of nonlinear wave equations , 1992 .

[38]  V. S. Manoranjan,et al.  Numerical Solutions of the Good Boussinesq Equation , 1984 .

[39]  Athanassios G. Bratsos,et al.  A modified predictor–corrector scheme for the two-dimensional sine-Gordon equation , 2007, Numerical Algorithms.

[40]  D. Korteweg,et al.  XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 1895 .

[41]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[42]  Abdul-Majid Wazwaz,et al.  A sine-cosine method for handlingnonlinear wave equations , 2004, Math. Comput. Model..

[43]  J. M. Sanz-Serna,et al.  A Hamiltonian explicit algorithm with spectral accuracy for the `good' Boussinesq system , 1990 .

[44]  C. S. Gardner,et al.  Method for solving the Korteweg-deVries equation , 1967 .

[45]  B. Attili The Adomian decomposition method for solving the Boussinesq equation arising in water wave propagation , 2006 .