On-line visual vocabularies for robot navigation and mapping

Detecting already-visited regions in vision-based navigation and mapping helps reduce drift and position uncertainties. Inspired from content-based image retrieval, an efficient approach is the use of visual vocabularies for measuring similarities between images. In this way, images corresponding to the same scene region can be associated. The state of the art proposals that address this topic suffer from two main drawbacks: (i) they require heavy user intervention, generally involving trial and error tasks for training and parameter tuning and (ii) they are suitable for batch processing only, where all the data is readily available before data processing. We propose a novel method for visual vocabulary navigation and mapping that overcomes these shortcomings. First, the vocabularies are built and updated online, during robot navigation, in order to efficiently represent the visual information present in the scene. Also, the vocabulary building process does not require any user intervention.

[1]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[2]  Josef Sivic Efficient visual search of images videos , 2006 .

[3]  David G. Stork,et al.  Pattern Classification , 1973 .

[4]  James S. Harris,et al.  Tables of integrals , 1998 .

[5]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[6]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .

[7]  David D. Lewis,et al.  Naive (Bayes) at Forty: The Independence Assumption in Information Retrieval , 1998, ECML.

[8]  Hongbin Zha,et al.  Vision-based Global Localization Using a Visual Vocabulary , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[9]  T. Nicosevici,et al.  Online Robust 3D Mapping Using Structure from Motion Cues , 2008, OCEANS 2008 - MTS/IEEE Kobe Techno-Ocean.

[10]  Shahriar Negahdaripour,et al.  Identification of Suitable Interest Points Using Geometric and Photometric Cues in Motion Video for Efficient 3-D Environmental Modeling , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[11]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[12]  Patrick M Kelly An Algorithm for Merging Hyperellipsoidal Clusters , 1994 .

[13]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[14]  David G. Stork,et al.  Pattern classification, 2nd Edition , 2000 .

[15]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[16]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[17]  José A. Castellanos,et al.  Mobile Robot Localization and Map Building: A Multisensor Fusion Approach , 2000 .

[18]  Paul Newman,et al.  FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance , 2008, Int. J. Robotics Res..

[19]  Peter Auer,et al.  Weak Hypotheses and Boosting for Generic Object Detection and Recognition , 2004, ECCV.

[20]  José A. Castellanos,et al.  Mobile Robot Localization and Map Building , 1999 .

[21]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[22]  P. Mahalanobis On the generalized distance in statistics , 1936 .

[23]  Pavel Berkhin,et al.  A Survey of Clustering Data Mining Techniques , 2006, Grouping Multidimensional Data.

[24]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[25]  Paul Newman,et al.  Probabilistic Appearance Based Navigation and Loop Closing , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[26]  Jean-Arcady Meyer,et al.  Incremental vision-based topological SLAM , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[27]  J. Crank Tables of Integrals , 1962 .

[28]  Theofanis Sapatinas,et al.  Discriminant Analysis and Statistical Pattern Recognition , 2005 .

[29]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[30]  S. Lazebnik,et al.  Local Features and Kernels for Classification of Texture and Object Categories: An In-Depth Study , 2005 .