An efficient space-time adaptive wavelet Galerkin method for time-periodic parabolic partial differential equations

We introduce a multitree-based adaptive wavelet Galerkin algorithm for space-time discretized linear parabolic partial differential equations, focusing on time-periodic problems. It is shown that the method converges with the best possible rate in linear complexity and can be applied for a wide range of wavelet bases. We discuss the implementational challenges arising from the Petrov-Galerkin nature of the variational formulation and present numerical results for the heat and a convection-diffusion-reaction equation.

[1]  Rob Stevenson,et al.  Adaptive wavelet methods for solving operator equations: An overview , 2009 .

[2]  Karsten Urban,et al.  Numerical optimization of the Voith‐Schneider® Propeller , 2007 .

[3]  W. Dahmen Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.

[4]  Rob P. Stevenson,et al.  Adaptive Wavelet Schemes for Parabolic Problems: Sparse Matrices and Numerical Results , 2011, SIAM J. Numer. Anal..

[5]  Oleg V. Vasilyev,et al.  Simultaneous space-time adaptive wavelet solution of nonlinear parabolic differential equations , 2006, J. Comput. Phys..

[6]  R. DeVore,et al.  Nonlinear approximation , 1998, Acta Numerica.

[7]  Thorsten Raasch,et al.  Adaptive Wavelet and Frame Schemes for Elliptic and Parabolic Equations , 2007 .

[8]  C. DeWitt-Morette,et al.  Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .

[9]  Rob P. Stevenson,et al.  Space-time adaptive wavelet methods for parabolic evolution problems , 2009, Math. Comput..

[10]  Boris Vexler,et al.  Adaptive Space-Time Finite Element Methods for Parabolic Optimization Problems , 2007, SIAM J. Control. Optim..

[11]  Sebastian Kestler On the adaptive tensor product wavelet Galerkin method with applications in finance , 2013 .

[12]  Wolfgang Dahmen,et al.  Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..

[13]  Wolfgang Dahmen,et al.  Sparse Evaluation of Compositions of Functions Using Multiscale Expansions , 2003, SIAM J. Math. Anal..

[14]  Sebastian Kestler,et al.  Fast evaluation of system matrices w.r.t. multi-tree collections of tensor product refinable basis functions , 2014, J. Comput. Appl. Math..

[15]  Karsten Urban,et al.  A new error bound for reduced basis approximation of parabolic partial differential equations , 2012 .

[16]  Tammo Jan Dijkema,et al.  Adaptive tensor product wavelet methods for solving PDEs , 2009 .

[17]  Pál-Andrej Nitsche,et al.  Best N Term Approximation Spaces for Tensor Product Wavelet Bases , 2006 .

[18]  Roman Andreev,et al.  Stability of sparse space–time finite element discretizations of linear parabolic evolution equations , 2013 .

[19]  Rob Stevenson,et al.  The adaptive tensor product wavelet scheme: sparse matrices and the application to singularly perturbed problems , 2012 .

[20]  Michael Griebel,et al.  A sparse grid space-time discretization scheme for parabolic problems , 2007, Computing.

[21]  Wolfgang Dahmen,et al.  Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..

[22]  Jacques-Louis Lions,et al.  Mathematical Analysis and Numerical Methods for Science and Technology: Volume 5 Evolution Problems I , 1992 .

[23]  Rob P. Stevenson,et al.  An optimal adaptive wavelet method without coarsening of the iterands , 2006, Math. Comput..

[24]  Karsten Urban,et al.  Wavelet Methods for Elliptic Partial Differential Equations , 2008 .

[25]  Winfried Sickel,et al.  Tensor products of Sobolev-Besov spaces and applications to approximation from the hyperbolic cross , 2009, J. Approx. Theory.

[26]  Graham Horton,et al.  A Space-Time Multigrid Method for Parabolic Partial Differential Equations , 1995, SIAM J. Sci. Comput..

[27]  Rob Stevenson,et al.  An Adaptive Wavelet Method for Solving High-Dimensional Elliptic PDEs , 2009 .

[28]  Xiao-Qiang Zhao,et al.  Dynamics of a Periodically Pulsed Bio-reactor Model , 1999 .

[29]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[30]  Rob Stevenson,et al.  Fast evaluation of nonlinear functionals of tensor product wavelet expansions , 2010 .

[31]  Karsten Urban,et al.  An improved error bound for reduced basis approximation of linear parabolic problems , 2013, Math. Comput..

[32]  Sebastian Kestler,et al.  An Efficient Approximate Residual Evaluation in the Adaptive Tensor Product Wavelet Method , 2013, J. Sci. Comput..

[33]  Michael Griebel,et al.  Tensor product type subspace splittings and multilevel iterative methods for anisotropic problems , 1995, Adv. Comput. Math..

[34]  Andreas Joachim Rupp,et al.  High dimensional wavelet methods for structured financial products , 2014 .