Can we predict the expansion rate of a translocated butterfly population based on a priori estimated movement rates

[1]  Jonas Knape,et al.  Population dynamics and future persistence of the clouded Apollo butterfly in southern Scandinavia: The importance of low intensity grazing and creation of habitat patches , 2017 .

[2]  Greta Bocedi,et al.  Spread rates on fragmented landscapes: the interacting roles of demography, dispersal and habitat availability , 2016 .

[3]  P. Somervuo,et al.  Reintroduction of threatened fungal species via inoculation , 2016 .

[4]  R. Heikkinen,et al.  Weather explains high annual variation in butterfly dispersal , 2016, Proceedings of the Royal Society B: Biological Sciences.

[5]  Luc Lens,et al.  The importance of realistic dispersal models in conservation planning: application of a novel modelling platform to evaluate management scenarios in an Afrotropical biodiversity hotspot , 2016, The Journal of applied ecology.

[6]  Greta Bocedi,et al.  Modelling potential success of conservation translocations of a specialist grassland butterfly , 2015 .

[7]  M. Luoto,et al.  Successful translocation of the threatened Clouded Apollo butterfly (Parnassius mnemosyne) and metapopulation establishment in southern Finland , 2015 .

[8]  Jessica Lindgren,et al.  Regional-scale land-cover change during the 20th century and its consequences for biodiversity , 2015, AMBIO.

[9]  Damaris Zurell,et al.  Mechanistic modelling of animal dispersal offers new insights into range expansion dynamics across fragmented landscapes , 2014 .

[10]  B. Baur Dispersal-limited species – A challenge for ecological restoration , 2014 .

[11]  Greta Bocedi,et al.  Impacts of Land Cover Data Selection and Trait Parameterisation on Dynamic Modelling of Species’ Range Expansion , 2014, PloS one.

[12]  P. Seddon,et al.  Reversing defaunation: Restoring species in a changing world , 2014, Science.

[13]  Greta Bocedi,et al.  RangeShifter: a platform for modelling spatial eco‐evolutionary dynamics and species' responses to environmental changes , 2014 .

[14]  J. Travis,et al.  Dispersal and species’ responses to climate change , 2013 .

[15]  F. Burel,et al.  Interactive effects of landscape and weather on dispersal , 2013 .

[16]  Nathalie Pettorelli,et al.  Maximizing the success of assisted colonizations , 2013 .

[17]  M. Reynolds,et al.  Modelling Reintroduced Populations: The State of the Art and Future Directions , 2012 .

[18]  Thierry Vanderborght,et al.  How successful are plant species reintroductions , 2011 .

[19]  Brian Huntley,et al.  Beyond bioclimatic envelopes: dynamic species' range and abundance modelling in the context of climatic change , 2010 .

[20]  J. Settele,et al.  The influences of landscape structure on butterfly distribution and movement: a review , 2009, Journal of Insect Conservation.

[21]  J. Travis,et al.  Thermal conditions during juvenile development affect adult dispersal in a spider , 2008, Proceedings of the National Academy of Sciences.

[22]  Wilfried Thuiller,et al.  Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models , 2008, Biology Letters.

[23]  H P Possingham,et al.  Assisted Colonization and Rapid Climate Change , 2008, Science.

[24]  Miska Luoto,et al.  An Empirical Test of a Diffusion Model: Predicting Clouded Apollo Movements in a Novel Environment , 2008, The American Naturalist.

[25]  Jean Clobert,et al.  Climate warming, dispersal inhibition and extinction risk , 2008 .

[26]  M. Araújo,et al.  Predicting range expansion of the map butterfly in Northern Europe using bioclimatic models , 2008, Biodiversity and Conservation.

[27]  Elja Arjas,et al.  Bayesian methods for analyzing movements in heterogeneous landscapes from mark-recapture data. , 2008, Ecology.

[28]  Hans Van Dyck,et al.  Landscape connectivity and animal behavior: functional grain as a key determinant for dispersal , 2007, Landscape Ecology.

[29]  T. Dayan,et al.  Predicting the spatial dynamics of a reintroduced population: the persian fallow deer , 2005 .

[30]  T. Benton,et al.  Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics , 2005, Biological reviews of the Cambridge Philosophical Society.

[31]  P. Välimäki,et al.  Migration of the clouded Apollo butterfly Parnassius mnemosyne in a network of suitable habitats – effects of patch characteristics , 2003 .

[32]  C. Thomas,et al.  Ecological dynamics of extinct species in empty habitat networks. 1. The role of habitat pattern and quantity, stochasticity and dispersal , 2003 .

[33]  Nicolas Schtickzelle,et al.  Behavioural responses to habitat patch boundaries restrict dispersal and generate emigration-patch area relationships in fragmented landscapes. , 2003, The Journal of animal ecology.

[34]  Miska Luoto,et al.  Determinants of distribution and abundance in the clouded apollo butterfly: a landscape ecological approach , 2001 .

[35]  B. Goodger,et al.  The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[36]  T. Ricketts The Matrix Matters: Effective Isolation in Fragmented Landscapes , 2001, The American Naturalist.

[37]  G. Meehl,et al.  Climate extremes: observations, modeling, and impacts. , 2000, Science.

[38]  J. Roland,et al.  ALPINE PARNASSIUS BUTTERFLY DISPERSAL: EFFECTS OF LANDSCAPE AND POPULATION SIZE , 2000 .

[39]  D. Macdonald,et al.  Simulating the proposed reintroduction of the European beaver (Castor fiber) to Scotland , 2000 .

[40]  M. Konvička,et al.  Population Structure, Behaviour and Selection of Oviposition Sites of an Endangered Butterfly, Parnassius Mnemosyne, in Litovelské Pomoravíl. Czech Republic , 1999, Journal of Insect Conservation.

[41]  Ilkka Hanski,et al.  An experimental study of migration in the Glanville fritillary butterfly Melitaea cinxia , 1996 .

[42]  N. Schtickzelle,et al.  Temporal variation in dispersal kernels in a metapopulation of the bog fritillary butterfly (Boloria eunomia) , 2012 .

[43]  S. Loss,et al.  Assisted colonization: Integrating conservation strategies in the face of climate change , 2011 .

[44]  T. Hovestadt,et al.  Costs and benefits of dispersal in butterflies , 2009 .

[45]  Damien A. Fordham,et al.  Dynamics of range margins for metapopulations under climate change , 2009, Proceedings of the Royal Society B: Biological Sciences.

[46]  T. Benton,et al.  The dynamics of climate-induced range shifting; perspectives from simulation modelling , 2009 .

[47]  I. Hanski,et al.  Multitrophic Level Interactions: Multitrophic interactions in space: metacommunity dynamics in fragmented landscapes , 2002 .

[48]  S. Mcneill,et al.  Butterflies and Moths , 1964 .