On maximal entanglement between two pairs in four-qubit pure states

We show that the state with the highest known average two-particle von Neumann entanglement entropy proposed by Sudbery and one of the authors gives a local maximum of this entropy. We also show that this is not the case for an alternative highly entangled state proposed by Brown et al.

[1]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[2]  G. Mahler,et al.  The maximal entangled three-particle state is unique , 1996 .

[3]  S Popescu,et al.  Multi-particle entanglement , 1998 .

[4]  W. Wootters,et al.  Distributed Entanglement , 1999, quant-ph/9907047.

[5]  A. Sudbery,et al.  Multipartite generalization of the Schmidt decomposition , 2000, quant-ph/0006125.

[6]  A. Sudbery,et al.  How entangled can two couples get , 2000, quant-ph/0005013.

[7]  A. Acín,et al.  Three-qubit pure-state canonical forms , 2000, quant-ph/0009107.

[8]  B. Moor,et al.  Four qubits can be entangled in nine different ways , 2001, quant-ph/0109033.

[9]  V I Yukalov Entanglement measure for composite systems. , 2003, Physical review letters.

[10]  Strong subadditivity inequality for quantum entropies and four-particle entanglement , 2003, quant-ph/0307206.

[11]  S. Stepney,et al.  Searching for highly entangled multi-qubit states , 2005 .

[12]  F. Verstraete,et al.  General monogamy inequality for bipartite qubit entanglement. , 2005, Physical review letters.

[13]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[14]  Martin B. Plenio,et al.  An introduction to entanglement measures , 2005, Quantum Inf. Comput..