Truth‐table Schnorr randomness and truth‐table reducible randomness

Schnorr randomness and computable randomness are natural concepts of random sequences. However van Lambalgen’s Theorem fails for both randomnesses. In this paper we define truth-table Schnorr randomness (defined in 6 too only by martingales) and truth-table reducible randomness, for which we prove that van Lambalgen's Theorem holds. We also show that the classes of truth-table Schnorr random reals relative to a high set contain reals Turing equivalent to the high set. It follows that each high Schnorr random real is half of a real for which van Lambalgen's Theorem fails. Moreover we establish the coincidence between triviality and lowness notions for truth-table Schnorr randomness. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

[1]  Rodney G. Downey,et al.  Schnorr Randomness , 2002, Electron. Notes Theor. Comput. Sci..

[2]  Paul M. B. Vitányi,et al.  Randomness , 2001, ArXiv.

[3]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 1997, Texts in Computer Science.

[4]  Wolfgang Merkle,et al.  On the Construction of Effective Random Sets , 2002, MFCS.

[5]  André Nies,et al.  LOWNESS FOR COMPUTABLE MACHINES , 2008 .

[6]  Antonín Kučera,et al.  On Relative Randomness , 1993, Ann. Pure Appl. Log..

[7]  Claus-Peter Schnorr,et al.  A unified approach to the definition of random sequences , 1971, Mathematical systems theory.

[8]  Johanna N. Y. Franklin,et al.  Schnorr trivial sets and truth-table reducibility , 2010, The Journal of Symbolic Logic.

[9]  André Nies,et al.  Randomness, relativization and Turing degrees , 2005, J. Symb. Log..

[10]  André Nies,et al.  Kolmogorov-Loveland randomness and stochasticity , 2005, Ann. Pure Appl. Log..

[11]  Bjørn Kjos-Hanssen,et al.  Lowness for the Class of Schnorr Random Reals , 2005, SIAM J. Comput..

[12]  A. Nies Computability and randomness , 2009 .

[13]  A. Nies Lowness Properties of Reals and Randomness , 2002 .

[14]  Liang Yu When van Lambalgen’s Theorem fails , 2006 .

[15]  Rodney G. Downey,et al.  Algorithmic Randomness and Complexity , 2010, Theory and Applications of Computability.

[16]  P. Odifreddi Classical recursion theory , 1989 .

[17]  Rodney G. Downey,et al.  On Schnorr and computable randomness, martingales, and machines , 2004, Math. Log. Q..

[18]  Sebastiaan Terwijn,et al.  Lowness for The Class of Random Sets , 1999, J. Symb. Log..

[19]  Sebastiaan Terwijn,et al.  Computational randomness and lowness* , 2001, Journal of Symbolic Logic.

[20]  A. Nies Lowness properties and randomness , 2005 .

[21]  R. Soare Recursively enumerable sets and degrees , 1987 .

[22]  André Nies,et al.  Using random sets as oracles , 2007 .

[23]  Johanna N. Y. Franklin,et al.  Relativizations of randomness and genericity notions , 2011 .

[24]  Wolfgang Merkle,et al.  Some Results on Effective Randomness , 2004, ICALP.

[25]  Gregory J. Chaitin Information-Theoretic Characterizations of Recursive Infinite Strings , 1976, Theor. Comput. Sci..