An online-implementable differential evolution tuned all-aspect guidance law

This paper proposes a differential evolution based method of improving the performance of conventional guidance laws at high heading errors, without resorting to techniques from optimal control theory, which are complicated and suffer from several limitations. The basic guidance law is augmented with a term that is a polynomial function of the heading error. The values of the coefficients of the polynomial are found by applying the differential evolution algorithm. The results are compared with the basic guidance law, and the all-aspect proportional navigation laws in the literature. A scheme for online implementation of the proposed law for application in practice is also given. (c) 2010 Elsevier Ltd. All rights reserved.

[1]  M. Guelman Proportional Navigation with a Maneuvering Target , 1972, IEEE Transactions on Aerospace and Electronic Systems.

[2]  Donald E. Kirk,et al.  Optimal control theory : an introduction , 1970 .

[3]  D. Hull,et al.  Time-to-go prediction for homing missiles based on minimum-time intercepts , 1991 .

[4]  Kenneth V. Price,et al.  An introduction to differential evolution , 1999 .

[5]  James R. Cloutier,et al.  All-aspect acceleration-limited homing guidance , 1999 .

[6]  Wook Hyun Kwon,et al.  Receding Horizon Guidance Laws with No Information on the Time-to-Go , 2000 .

[7]  Rainer Storn,et al.  Differential Evolution Research – Trends and Open Questions , 2008 .

[8]  G. K. F. Lee Estimation of the time-to-go parameter for air-to-air missiles , 1985 .

[9]  S. Pradeep,et al.  A differential evolution tuned optimal guidance law , 2007, 2007 Mediterranean Conference on Control & Automation.

[10]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[11]  Uday K. Chakraborty,et al.  Advances in Differential Evolution , 2010 .

[12]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[13]  Min-Jea Tahk,et al.  Optimal Guidance Laws with Terminal Impact Angle Constraint , 2005 .

[14]  René Thomsen,et al.  A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[15]  Raghunathan Thangavelu,et al.  An online implementable differential evolution tuned optimal guidance law , 2007, GECCO '07.

[16]  Gerard Leng,et al.  GUIDANCE ALGORITHM DESIGN : A NONLINEAR INVERSE APPROACH , 1998 .

[17]  Debasish Ghose,et al.  Pure proportional navigation against time-varying target manoeuvres , 1996 .

[18]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[19]  Mauricio Guelman,et al.  A qualitative study of proportional navigation , 1971, IEEE Transactions on Aerospace and Electronic Systems.

[20]  Riccardo Poli,et al.  New ideas in optimization , 1999 .

[21]  Ching-Fang Lin,et al.  Modern Navigation, Guidance, And Control Processing , 1991 .

[22]  Paul Zarchan,et al.  Tactical and strategic missile guidance , 1990 .

[23]  Min-Jea Tahk,et al.  Practical time-to-go estimation methods for optimal guidance , 1999 .

[24]  Der-Ren Taur Nonlinear Guidance and Navigation of a Tactical Missile with High Heading Error , 2002 .

[25]  Velusamy Subramaniam,et al.  An All-Aspect Near-Optimal Guidance Law , 2000 .

[26]  Vincent Lam Time-to-Go Estimate for Missile Guidance , 2005 .

[27]  Ilan Rusnak,et al.  Guidance of a homing missile via nonlinear geometric control methods , 1995 .

[28]  Min-Jea Tahk,et al.  Time-to-go weighted optimal guidance with impact angle constraints , 2006, IEEE Transactions on Control Systems Technology.

[29]  N. A. Shneydor,et al.  Missile guidance and pursuit , 1998 .

[30]  Hans Seywald,et al.  Genetic Algorithm Approach for Optimal Control Problems with Linearly Appearing Controls , 1995 .

[31]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[32]  T. Grundy,et al.  Progress in Astronautics and Aeronautics , 2001 .

[33]  Feng-Sheng Wang,et al.  Hybrid differential evolution with multiplier updating method for nonlinear constrained optimization problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[34]  Mario Innocenti Nonlinear guidance techniques for agile missiles , 2001 .

[35]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[36]  Joseph Z. Ben-Asher,et al.  Advances in Missile Guidance Theory , 1998 .

[37]  R. Storn,et al.  On the usage of differential evolution for function optimization , 1996, Proceedings of North American Fuzzy Information Processing.

[38]  Min-Jea Tahk,et al.  Recursive time-to-go estimation for homing guidance missiles , 2002 .

[39]  Leandro dos Santos Coelho,et al.  Self-adaptive Differential Evolution Using Chaotic Local Search for Solving Power Economic Dispatch with Nonsmooth Fuel Cost Function , 2008 .

[40]  J. Shinar,et al.  Guidance law evaluation in highly nonlinear scenarios - Comparison to linear analysis , 1999 .

[41]  Paul Zarchan,et al.  A New Look at Classical vs Modern Homing Missile Guidance , 1981 .