A multi-objective metamodel-assisted memetic algorithm with strength-based local refinement
暂无分享,去创建一个
[1] R. Lewontin. ‘The Selfish Gene’ , 1977, Nature.
[2] T. Simpson,et al. Comparative studies of metamodelling techniques under multiple modelling criteria , 2001 .
[3] Lothar Thiele,et al. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.
[4] Marco Laumanns,et al. SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .
[5] Kevin Kok Wai Wong,et al. Classification of adaptive memetic algorithms: a comparative study , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).
[6] Andreas Zell,et al. Evolution strategies with controlled model assistance , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).
[7] Simon Haykin,et al. Neural Networks: A Comprehensive Foundation , 1998 .
[8] Hisao Ishibuchi,et al. Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling , 2003, IEEE Trans. Evol. Comput..
[9] Hisao Ishibuchi,et al. Multi-objective genetic local search algorithm , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.
[10] G. Gary Wang,et al. An Efficient Pareto Set Identification Approach for Multiobjective Optimization on Black-Box Functions , 2005 .
[11] Bernhard Sendhoff,et al. On Evolutionary Optimization with Approximate Fitness Functions , 2000, GECCO.
[12] Andy J. Keane,et al. Combining Global and Local Surrogate Models to Accelerate Evolutionary Optimization , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).
[13] Natalio Krasnogor,et al. Toward truly "memetic" memetic algorithms: discussion and proof of concepts , 2002 .
[14] Marco Laumanns,et al. SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .
[15] Marios K. Karakasis,et al. On the use of metamodel-assisted, multi-objective evolutionary algorithms , 2006 .
[16] W. Hart. Adaptive global optimization with local search , 1994 .
[17] Bernhard Sendhoff,et al. Generalizing Surrogate-Assisted Evolutionary Computation , 2010, IEEE Transactions on Evolutionary Computation.
[18] Petros Koumoutsakos,et al. Accelerating evolutionary algorithms with Gaussian process fitness function models , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).
[19] Jing J. Liang,et al. Problem Definitions for Performance Assessment of Multi-objective Optimization Algorithms , 2007 .
[20] Bernhard Sendhoff,et al. A framework for evolutionary optimization with approximate fitness functions , 2002, IEEE Trans. Evol. Comput..
[21] Andy J. Keane,et al. Computational Approaches for Aerospace Design: The Pursuit of Excellence , 2005 .
[22] Andy J. Keane,et al. Meta-Lamarckian learning in memetic algorithms , 2004, IEEE Transactions on Evolutionary Computation.
[23] Kyriakos C. Giannakoglou,et al. Design of optimal aerodynamic shapes using stochastic optimization methods and computational intelligence , 2002 .
[24] X. Yao,et al. Combining landscape approximation and local search in global optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).
[25] Andreas Zell,et al. Model-Assisted Steady-State Evolution Strategies , 2003, GECCO.
[26] Pablo Moscato,et al. Memetic algorithms: a short introduction , 1999 .
[27] Peter A. N. Bosman,et al. Exploiting gradient information in numerical multi--objective evolutionary optimization , 2005, GECCO '05.
[28] T. Simpson,et al. Comparative studies of metamodeling techniques under multiple modeling criteria , 2000 .
[29] Natalio Krasnogor,et al. Studies on the theory and design space of memetic algorithms , 2002 .
[30] Bu-Sung Lee,et al. Memetic algorithm using multi-surrogates for computationally expensive optimization problems , 2007, Soft Comput..
[31] M. Giles,et al. Viscous-inviscid analysis of transonic and low Reynolds number airfoils , 1986 .
[32] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[33] Andrzej Jaszkiewicz,et al. Genetic local search for multi-objective combinatorial optimization , 2022 .
[34] Joshua D. Knowles,et al. M-PAES: a memetic algorithm for multiobjective optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).
[35] Raphael T. Haftka,et al. Response Surface Techniques for Diffuser Shape Optimization , 2000 .
[36] Marios K. Karakasis,et al. Low-cost genetic optimization based on inexact pre-evaluations and the sensitivity analysis of design parameters , 2001 .
[37] Kemper Lewis,et al. EFFICIENT GLOBAL OPTIMIZATION USING HYBRID GENETIC ALGORITHMS , 2002 .
[38] X. Yao. Evolutionary Search of Approximated N-dimensional Landscapes , 2000 .
[39] A. Keane,et al. Evolutionary Optimization of Computationally Expensive Problems via Surrogate Modeling , 2003 .