Synchronization between fractional-order Ravinovich–Fabrikant and Lotka–Volterra systems

This article examines the synchronization performance between two fractional-order systems, viz., the Ravinovich–Fabrikant chaotic system as drive system and the Lotka–Volterra system as response system. The chaotic attractors of the systems are found for fractional-order time derivatives described in Caputo sense. Numerical simulation results which are carried out using Adams–Boshforth–Moulton method show that the method is reliable and effective for synchronization of nonlinear dynamical evolutionary systems. Effects on synchronization time due to the presence of fractional-order derivative are the key features of the present article.

[1]  D. Matignon Stability results for fractional differential equations with applications to control processing , 1996 .

[2]  Bernd Blasius,et al.  Complex dynamics and phase synchronization in spatially extended ecological systems , 1999, Nature.

[3]  E. Soczkiewicz,et al.  Application of Fractional Calculus in the Theory of Viscoelasticity , 2002 .

[4]  Jinde Cao,et al.  Adaptive synchronization of chaotic Cohen–Crossberg neural networks with mixed time delays , 2010 .

[5]  Jun-an Lu,et al.  Parameter identification and backstepping control of uncertain Lü system , 2003 .

[6]  José António Tenreiro Machado,et al.  Preface: Special issue of computers and mathematics with applications on fractional differentiation and its applications , 2010, Comput. Math. Appl..

[7]  A. J. Lotka Elements of Physical Biology. , 1925, Nature.

[8]  S. Das,et al.  Peristaltic flow of viscoelastic fluid with fractional Maxwell model through a channel , 2010, Appl. Math. Comput..

[9]  Emad E. Mahmoud,et al.  Chaos synchronization of two different chaotic complex Chen and Lü systems , 2009 .

[10]  O. Agrawal,et al.  Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering , 2007 .

[11]  R. Magin Fractional Calculus in Bioengineering , 2006 .

[12]  Hongjie Yu,et al.  Chaotic synchronization based on stability criterion of linear systems , 2003 .

[13]  Li Ruihong,et al.  Chaos control and synchronization of the Φ6-Van der Pol system driven by external and parametric excitations , 2008 .

[14]  Guanrong Chen,et al.  Bifurcation and Chaos in a Complex Model of dissipative Medium , 2004, Int. J. Bifurc. Chaos.

[15]  S. S. Yang,et al.  Generalized Synchronization in Chaotic Systems , 1998 .

[16]  Jianbo Liu,et al.  Anti-phase synchronization in coupled map lattices , 2000 .

[17]  Jinghua Xiao,et al.  Antiphase synchronization in coupled chaotic oscillators. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Richard L Magin,et al.  Fractional calculus in bioengineering, part 2. , 2004, Critical reviews in biomedical engineering.

[19]  M. T. Yassen,et al.  Chaos synchronization between two different chaotic systems using active control , 2005 .

[20]  L. Greller,et al.  Explosive route to chaos through a fractal torus in a generalized lotka-volterra model , 1988 .

[21]  Pietro Cornetti,et al.  Calculation of the tensile and flexural strength of disordered materials using fractional calculus , 2004 .

[22]  J. L. Lage,et al.  Application of Fractional Calculus to Fluid Mechanics , 2002 .

[23]  A. N. Njah,et al.  Tracking control and synchronization of the new hyperchaotic Liu system via backstepping techniques , 2010 .

[24]  R. Magin,et al.  Modeling the Cardiac Tissue Electrode Interface Using Fractional Calculus , 2008 .

[25]  E. Weibel,et al.  Fractals in Biology and Medicine , 1994 .

[26]  Jinhu Lu,et al.  Synchronization of an uncertain unified chaotic system via adaptive control , 2002 .

[27]  Mehmet Merdan,et al.  A multistage differential transformation method for approximate solution of Hantavirus infection model , 2012 .

[28]  Zaid Odibat,et al.  Adaptive feedback control and synchronization of non-identical chaotic fractional order systems , 2010 .

[29]  Hadi Taghvafard,et al.  Numerical solution of the high thermal loss problem presented by a fractional differential equation , 2011 .

[30]  Kai Diethelm,et al.  Multi-order fractional differential equations and their numerical solution , 2004, Appl. Math. Comput..

[31]  H. Yau Design of adaptive sliding mode controller for chaos synchronization with uncertainties , 2004 .

[32]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[33]  Emad E. Mahmoud,et al.  Phase and antiphase synchronization of two identical hyperchaotic complex nonlinear systems , 2010 .

[34]  Ahmet Yildirim,et al.  An Algorithm for Solving the Fractional Nonlinear Schrödinger Equation by Means of the Homotopy Perturbation Method , 2009 .

[35]  Alan D. Freed,et al.  Detailed Error Analysis for a Fractional Adams Method , 2004, Numerical Algorithms.

[36]  Hadi Taghvafard,et al.  Phase and anti-phase synchronization of fractional order chaotic systems via active control , 2011 .

[37]  Ju H. Park,et al.  A novel criterion for delayed feedback control of time-delay chaotic systems , 2005 .

[38]  Y. Kuramoto,et al.  Dephasing and bursting in coupled neural oscillators. , 1995, Physical review letters.

[39]  J. Sprott Chaos and time-series analysis , 2001 .

[40]  Alan V. Oppenheim,et al.  Circuit implementation of synchronized chaos with applications to communications. , 1993, Physical review letters.

[41]  J. Kurths,et al.  From Phase to Lag Synchronization in Coupled Chaotic Oscillators , 1997 .

[42]  M. Lakshmanan,et al.  Chaos in Nonlinear Oscillators: Controlling and Synchronization , 1996 .

[43]  O. Agrawal,et al.  Advances in Fractional Calculus , 2007 .

[44]  Richard L. Magin,et al.  Fractional calculus models of complex dynamics in biological tissues , 2010, Comput. Math. Appl..

[45]  Lilian Huang,et al.  Synchronization of chaotic systems via nonlinear control , 2004 .

[46]  A. J. Lotka,et al.  Elements of Physical Biology. , 1925, Nature.

[47]  Dibakar Ghosh,et al.  Projective synchronization of new hyperchaotic system with fully unknown parameters , 2010 .