A Monte-Carlo based stochastic approach of soccer robot self-localization

The self-localization problem of mobile robot is considered as one of the most difficult problems in robotics, and is generally handled through stochastic methods. This paper discusses a stochastic approach of soccer robot self-localization using Monte-Carlo localization (MCL) method. In MCL, environment information of lines, goals, balls, etc. is first retrieved and processed; such information is used to deal with state uncertainty of robot self-localization. Experiments show that MCL is a fast and robust way in discovering position and pose of soccer robot.

[1]  Wolfram Burgard,et al.  Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[2]  Lindsay Kleeman,et al.  Mobile Robot Sonar for Target Localization and Classification , 1995, Int. J. Robotics Res..

[3]  Hugh F. Durrant-Whyte,et al.  Mobile robot localization by tracking geometric beacons , 1991, IEEE Trans. Robotics Autom..

[4]  Wolfram Burgard,et al.  Estimating the Absolute Position of a Mobile Robot Using Position Probability Grids , 1996, AAAI/IAAI, Vol. 2.

[5]  Adrian Kaehler,et al.  Robot-Vision Signal Processing Primitives , 2008 .

[6]  G. Bradski,et al.  Robot-Vision Signal Processing Primitives [Applications Corner] , 2008, IEEE Signal Processing Magazine.

[7]  Hans Utz,et al.  Improving Vision-Based Self-localization , 2002, RoboCup.

[8]  Manuela M. Veloso,et al.  Sensor resetting localization for poorly modelled mobile robots , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[9]  Andrea Bonarini,et al.  An omnidirectional vision sensor for fast tracking for mobile robots , 2000, IEEE Trans. Instrum. Meas..

[10]  Sheng Fu,et al.  Simultaneous Localization and Mapping for Mobile Robots Using Sonar Range Finder and Monocular Vision , 2007, 2007 IEEE International Conference on Automation and Logistics.

[11]  Tony Lindeberg,et al.  Edge Detection and Ridge Detection with Automatic Scale Selection , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  Wolfram Burgard,et al.  Monte Carlo localization in outdoor terrains using multilevel surface maps , 2008 .

[13]  Xianzhong Dai,et al.  A Visual Based Extended Monte Carlo Localization for Autonomous Mobile Robots , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[14]  Dirk Thomas,et al.  Particle-Filter-Based Self-localization Using Landmarks and Directed Lines , 2005, RoboCup.

[15]  Manuela M. Veloso,et al.  Fast and inexpensive color image segmentation for interactive robots , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[16]  Andreas Zell,et al.  Vision Based Goal Keeper Localization , 2000 .

[17]  Wolfram Burgard,et al.  Monte Carlo Localization: Efficient Position Estimation for Mobile Robots , 1999, AAAI/IAAI.

[18]  J. Gaspar,et al.  Omni-directional vision for robot navigation , 2000, Proceedings IEEE Workshop on Omnidirectional Vision (Cat. No.PR00704).

[19]  Wolfram Burgard,et al.  Robust Monte Carlo localization for mobile robots , 2001, Artif. Intell..

[20]  Dieter Fox,et al.  Adapting the Sample Size in Particle Filters Through KLD-Sampling , 2003, Int. J. Robotics Res..

[21]  Wolfram Burgard,et al.  Active Monte Carlo Localization in Outdoor Terrains Using Multi-level Surface Maps , 2007, AMS.

[22]  Wolfram Burgard,et al.  Monte Carlo Localization in Outdoor Terrains Using Multi-Level Surface Maps , 2007, FSR.

[23]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.