Signal estimation via selective harmonic amplification: MUSIC, Redux

The technique known as multiple signal classification (MUSIC) is a semi-empirical way to obtain pseudo-spectra that highlight the spectral-energy distribution of a time series. It is based on a certain canonical decomposition of a Toeplitz matrix formed out of an estimated autocorrelation sequence. The purpose of this paper is to present an analogous canonical decomposition of the state-covariance matrix of a stable linear filter driven by a given time series. Accordingly, the paper concludes with a modification of MUSIC. The new method starts with filtering the time series and then estimating the covariance of the state of the filter. This step in essence improves the signal-to-noise ratio (SNR) by amplifying the contribution to the actual value of the state-covariance of a selected harmonic interval where spectral lines are expected to reside. Then, the method capitalizes on the canonical decomposition of the filter state-covariance to retrieve information on the location of possible spectral lines. The framework requires uniformly spaced samples of the process.

[1]  M. Kreĭn,et al.  The Markov Moment Problem and Extremal Problems , 1977 .

[2]  V. Pisarenko The Retrieval of Harmonics from a Covariance Function , 1973 .

[3]  N. Akhiezer,et al.  The Classical Moment Problem. , 1968 .

[4]  Tryphon T. Georgiou,et al.  Spectral estimation via selective harmonic amplification , 2001, IEEE Trans. Autom. Control..

[5]  S. Haykin Nonlinear Methods of Spectral Analysis , 1980 .

[6]  Stefan Rolewicz,et al.  On a problem of moments , 1968 .

[7]  Tryphon T. Georgiou,et al.  Realization of power spectra from partial covariance sequences , 1987, IEEE Trans. Acoust. Speech Signal Process..

[8]  Pál Turán,et al.  Über den Zusammenhang der Extremen von Harmonischen Funktionen mit Ihren Koeffizienten und Über den Picard—Landauschen Satz , 1970 .

[9]  Tryphon T. Georgiou,et al.  A new approach to spectral estimation: a tunable high-resolution spectral estimator , 2000, IEEE Trans. Signal Process..

[10]  Tryphon T. Georgiou,et al.  On the Envelope of Spectral Power of Stochastic Processes , 1991, 1991 American Control Conference.

[11]  M. G. Kreĭn,et al.  Some questions in the theory of moments , 1962 .

[12]  Tryphon T. Georgiou Spectral estimation via selective harmonic amplification: a canonical decomposition for state-covariances , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[13]  Tryphon T. Georgiou,et al.  A generalized entropy criterion for Nevanlinna-Pick interpolation with degree constraint , 2001, IEEE Trans. Autom. Control..

[14]  B. Hofmann-Wellenhof,et al.  Introduction to spectral analysis , 1986 .

[15]  Tryphon T. Georgiou,et al.  The interpolation problem with a degree constraint , 1999, IEEE Trans. Autom. Control..

[16]  Lucas J. van Vliet,et al.  The digital signal processing handbook , 1998 .

[17]  H. Landau,et al.  On the well-posedness of the rational covariance extension problem , 1997 .

[18]  C. Byrnes,et al.  A complete parameterization of all positive rational extensions of a covariance sequence , 1995, IEEE Trans. Autom. Control..

[19]  C. Byrnes,et al.  A Convex Optimization Approach to the Rational Covariance Extension Problem , 1999 .

[20]  J. Walsh Interpolation and Approximation by Rational Functions in the Complex Domain , 1935 .

[21]  D. Sarason Generalized interpolation in , 1967 .

[22]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[23]  T. Georgiou A topological approach to Nevanlinna-pick interpolation , 1987 .