Multimission Fuel-Burn Minimization in Aircraft Design: A Surrogate-Modeling Approach

Multimission Fuel-Burn Minimization in Aircraft Design: A Surrogate-Modeling Approach Rhea Patricia Liem Doctor of Philosophy Graduate Department of University of Toronto Institute for Aerospace Studies University of Toronto 2015 Aerodynamic shape and aerostructural design optimizations that maximize the performance at a single flight condition result in designs with unacceptable off-design performance. While considering multiple flight conditions in the optimization improves the robustness of the designs, there is a need to develop a rational strategy for choosing the flight conditions and their relative emphases such that multipoint optimizations reflect the true objective function. In addition, there is a need to consider uncertain missions and flight conditions. In this thesis, the strategies to formulate the multipoint objective functions for aerodynamic shape and aerostructural optimization are presented. To determine the flight conditions and their corresponding weights, a novel surrogate-based mission analysis is developed to efficiently analyze hundreds of actual mission data to emulate their flight condition distribution. Using accurate and reliable surrogate models to approximate the aerodynamic coefficients used in the analysis makes this procedure computationally tractable. A mixture of experts (ME) approach is developed to overcome the limitations of conventional surrogate models in modeling the complex transonic drag profile. The ME approach combines multiple surrogate models probabilistically based on the divide-andconquer strategy. Using this model in the mission analysis significantly improves the range estimation accuracy, as compared to other conventional surrogate models. As expected, the multipoint aerodynamic shape and aerostructural optimizations demonstrate a consistent drag reduction, instead of the localized improvement by the single-point optimizations. The improved robustness in the multipoint optimized designs was also observed in terms of the improved range performance and more consistent fuel-burn reduction across the different missions. The results presented in this thesis show that the surrogate-model-assisted multipoint optimization produces a robust design that is optimized for a set of flight conditions matching real-world operations, which is ensured by the use of historical flight data.

[1]  Ilan Kroo,et al.  Framework for Aircraft Conceptual Design and Environmental Performance Studies , 2005 .

[2]  Zhong-Hua Han,et al.  A New Cokriging Method for Variable-Fidelity Surrogate Modeling of Aerodynamic Data , 2010 .

[3]  A. Chambers,et al.  World Energy Outlook 2008 , 2008 .

[4]  I. Sobol On the Systematic Search in a Hypercube , 1979 .

[5]  Joaquim R. R. A. Martins,et al.  An adaptive approach to constraint aggregation using adjoint sensitivity analysis , 2007 .

[6]  Kazuhiro Nakahashi,et al.  High-Fidelity Multidisciplinary Design Optimization of Wing Shape for Regional Jet Aircraft , 2005, EMO.

[7]  François Gallard,et al.  Aerodynamic aircraft design for mission performance by multipoint optimization , 2013 .

[8]  M. Oppermann,et al.  Outbound Travel and Quality of Life: The Effect of Airline Price Wars , 1999 .

[9]  Danny C. Sorensen,et al.  The Sylvester equation and approximate balanced reduction , 2002 .

[10]  L. Huyse,et al.  Robust airfoil optimization to achieve drag reduction over a range of Mach numbers , 2002 .

[11]  Andy J. Keane,et al.  Optimization using surrogate models and partially converged computational fluid dynamics simulations , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  Karen Willcox,et al.  Multidisciplinary Design and Optimization of the Silent Aircraft , 2006 .

[13]  M. J. Rimlinger,et al.  Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers , 1997 .

[14]  Graeme J. Kennedy,et al.  Scalable Parallel Approach for High-Fidelity Steady-State Aeroelastic Analysis and Adjoint Derivative Computations , 2014 .

[15]  Zoubin Ghahramani,et al.  Optimal model inference for Bayesian mixture of experts , 2000, Neural Networks for Signal Processing X. Proceedings of the 2000 IEEE Signal Processing Society Workshop (Cat. No.00TH8501).

[16]  Antony Jameson,et al.  Automatic Design of Transonic Airfoils to Reduce Reduce the Shock Induced Pressure Drag , 2007 .

[17]  Joaquim R. R. A. Martins,et al.  A modular adjoint approach to aircraft mission analysis and optimization , 2015 .

[18]  Gregory A. Wrenn,et al.  An indirect method for numerical optimization using the Kreisselmeir-Steinhauser function , 1989 .

[19]  Bao-Gang Hu,et al.  An adaptive fuzzy c-means clustering-based mixtures of experts model for unlabeled data classification , 2008, Neurocomputing.

[20]  Reza Ebrahimpour,et al.  Mixture of experts: a literature survey , 2014, Artificial Intelligence Review.

[21]  Thomas J. Santner,et al.  Design and analysis of computer experiments , 1998 .

[22]  Stefan Görtz,et al.  On Improving Efficiency and Accuracy of Variable-Fidelity Surrogate Modeling in Aero-data for Loads Context , 2009 .

[23]  J. Martins,et al.  Multipoint Aerodynamic Shape Optimization Investigations of the Common Research Model Wing , 2015 .

[24]  John T. Hwang,et al.  Review and Unification of Methods for Computing Derivatives of Multidisciplinary Computational Models , 2013 .

[25]  James I. Hileman,et al.  Energy Content and Alternative Jet Fuel Viability , 2010 .

[26]  Joel B Smith TRENDS IN ENERGY USE AND FUEL EFFICIENCY IN THE U.S. COMMERCIAL AIRLINE INDUSTRY , 1982 .

[27]  Andreas Schäfer,et al.  Historical and future trends in aircraft performance, cost, and emissions , 2001 .

[28]  Joaquim R. R. A. Martins,et al.  Aerodynamic Design Optimization Studies of a Blended-Wing-Body Aircraft , 2014 .

[29]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[30]  G. B. Cosentino,et al.  Numerical optimization design of advanced transonic wing configurations , 1985 .

[31]  Malcolm I. Heywood,et al.  Input partitioning to mixture of experts , 2002, Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290).

[32]  David W. Zingg,et al.  Approach to Aerodynamic Design Through Numerical Optimization , 2013 .

[33]  H. Omre Bayesian kriging—Merging observations and qualified guesses in kriging , 1987 .

[34]  N. Cressie Geostatistical analysis of spatial data , 1991 .

[35]  S. C. Johnson Hierarchical clustering schemes , 1967, Psychometrika.

[36]  S. Stigler Gergonne's 1815 paper on the design and analysis of polynomial regression experiments , 1974 .

[37]  J. Morlier,et al.  Surrogate modeling approximation using a mixture of experts based on EM joint estimation , 2011 .

[38]  J. Alonso,et al.  Using gradients to construct cokriging approximation models for high-dimensional design optimization problems , 2002 .

[39]  Joaquim R. R. A. Martins,et al.  A Comparison of Metallic and Composite Aircraft Wings Using Aerostructural Design Optimization , 2012 .

[40]  Geoffrey E. Hinton,et al.  Adaptive Mixtures of Local Experts , 1991, Neural Computation.

[41]  L. Sirovich TURBULENCE AND THE DYNAMICS OF COHERENT STRUCTURES PART I : COHERENT STRUCTURES , 2016 .

[42]  Carl E. Rasmussen,et al.  Infinite Mixtures of Gaussian Process Experts , 2001, NIPS.

[43]  Pearu Peterson,et al.  Fortran to Python Interface Generator with an Application to Aerospace Engineering , 2001 .

[44]  A. Jameson,et al.  A COMPARISON OF THE CONTINUOUS AND DISCRETE ADJOINT APPROACH TO AUTOMATIC AERODYNAMIC OPTIMIZATION , 2000 .

[45]  Ren-Jye Yang,et al.  Approximation methods in multidisciplinary analysis and optimization: a panel discussion , 2004 .

[46]  Joaquim R. R. A. Martins,et al.  RANS-based aerodynamic shape optimization investigations of the common research modelwing , 2014 .

[47]  Michael S. Eldred,et al.  Second-Order Corrections for Surrogate-Based Optimization with Model Hierarchies , 2004 .

[48]  Antony Jameson,et al.  Aerodynamic design via control theory , 1988, J. Sci. Comput..

[49]  David M. Himmelblau,et al.  Process control via artificial neural networks and reinforcement learning , 1992 .

[50]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[51]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[52]  Ilan Kroo,et al.  Aircraft Design: Synthesis and Analysis , 1999 .

[53]  J. H. Starnes,et al.  Construction of Response Surface Approximations for Design Optimization , 1998 .

[54]  J. Alonso,et al.  ADjoint: An Approach for the Rapid Development of Discrete Adjoint Solvers , 2006 .

[55]  Joaquim R. R. A. Martins,et al.  High-Fidelity Aerostructural Design Optimization of a Supersonic Business Jet , 2002 .

[56]  Joaquim R. R. A. Martins,et al.  Multipoint High-Fidelity Aerostructural Optimization of a Transport Aircraft Configuration , 2014 .

[57]  D. Krige A statistical approach to some basic mine valuation problems on the Witwatersrand, by D.G. Krige, published in the Journal, December 1951 : introduction by the author , 1951 .

[58]  J. Peraire,et al.  Balanced Model Reduction via the Proper Orthogonal Decomposition , 2002 .

[59]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[60]  M. Y. M. Ahmed,et al.  Surrogate-Based Aerodynamic Design Optimization: Use of Surrogates in Aerodynamic Design Optimization , 2009 .

[61]  W. K. Anderson,et al.  Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation , 1997 .

[62]  N. Cressie The origins of kriging , 1990 .

[63]  Robert W. Ritzi,et al.  Introduction to Geostatistics: Applications in Hydrogeology , 1998 .

[64]  David Hummels Transportation Costs and International Trade in the Second Era of Globalization , 2007 .

[65]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[66]  R. M. Hicks,et al.  Single-Point and Multipoint Aerodynamic Shape Optimization of High-Speed Civil Transport , 2001 .

[67]  A. Jameson,et al.  Aerodynamic Shape Optimization of Complex Aircraft Configurations via an Adjoint Formulation , 1996 .

[68]  P. Bickel,et al.  Some theory for Fisher''s linear discriminant function , 2004 .

[69]  Barnes W. McCormick,et al.  Aerodynamics, Aeronautics and Flight Mechanics , 1979 .

[70]  David W. Zingg,et al.  Aerodynamic Shape Optimization of a Blended-Wing-Body Regional Transport for a Short Range Mission , 2013 .

[71]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[72]  Timothy W. Simpson,et al.  Design and Analysis of Computer Experiments in Multidisciplinary Design Optimization: A Review of How Far We Have Come - Or Not , 2008 .

[73]  Juan J. Alonso,et al.  Design of a Low-Boom Supersonic Business Jet Using Cokriging Approximation Models , 2002 .

[74]  Theresa Dawn Robinson,et al.  Surrogate-Based Optimization Using Multifidelity Models with Variable Parameterization and Corrected Space Mapping , 2008 .

[75]  Ilan Kroo,et al.  Aircraft optimization for minimal environmental impact , 2002 .

[76]  David L. Greene,et al.  Energy-Efficiency Improvement Potential of Commercial Aircraft , 1992 .

[77]  H. Raiffa,et al.  Introduction to Statistical Decision Theory , 1996 .

[78]  Eric James Grimme,et al.  Krylov Projection Methods for Model Reduction , 1997 .

[79]  Charles E. McCulloch,et al.  The EM Algorithm and Its Extensions , 1998 .

[80]  David W. Zingg,et al.  Aerodynamic Optimization Under a Range of Operating Conditions , 2006 .

[81]  S. Brown,et al.  Displacement extrapolations for CFD+CSM aeroelastic analysis , 1997 .

[82]  W. K. Anderson,et al.  First-Order Model Management With Variable-Fidelity Physics Applied to Multi-Element Airfoil Optimization , 2000 .

[83]  Jan Roskam Preliminary sizing of airplanes , 1989 .

[84]  T. Pulliam,et al.  Multipoint and Multi-Objective Aerodynamic Shape Optimization , 2002 .

[85]  W. Habashi,et al.  Multi-parameter analysis of aero-icing problems via proper orthogonal decomposition and multidimensional interpolation , 2013 .

[86]  Joaquim R. R. A. Martins,et al.  Simultaneous aircraft allocation and mission optimization using a modular adjoint approach , 2015 .

[87]  G. Matheron Principles of geostatistics , 1963 .

[88]  J. Freidman,et al.  Multivariate adaptive regression splines , 1991 .

[89]  Shawn E. Gano,et al.  Update strategies for kriging models used in variable fidelity optimization , 2006 .

[90]  Russell W Stratton,et al.  Impact of aviation non-CO₂ combustion effects on the environmental feasibility of alternative jet fuels. , 2011, Environmental science & technology.

[91]  Timothy W. Simpson,et al.  Sampling Strategies for Computer Experiments: Design and Analysis , 2001 .

[92]  J. Alonso,et al.  A Coupled-Adjoint Sensitivity Analysis Method for High-Fidelity Aero-Structural Design , 2005 .

[93]  J. Peraire,et al.  Constrained, multipoint shape optimisation for complex 3D configurations , 1998, The Aeronautical Journal (1968).

[94]  Cody A. Paige,et al.  Automatic Differentiation Adjoint of the Reynolds-Averaged Navier-Stokes Equations with a Turbulence Model , 2013 .

[95]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[96]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[97]  P. Sagaut,et al.  Building Efficient Response Surfaces of Aerodynamic Functions with Kriging and Cokriging , 2008 .

[98]  Joaquim R. R. A. Martins,et al.  Aircraft conceptual design for optimal environmental performance , 2012, The Aeronautical Journal (1968).

[99]  Hak-Tae Lee,et al.  Closed-Form Takeoff Weight Estimation Model for Air Transportation Simulation , 2010 .

[100]  Duy Nguyen-Tuong,et al.  Local Gaussian Process Regression for Real Time Online Model Learning , 2008, NIPS.

[101]  Robert A. Jacobs,et al.  Hierarchical Mixtures of Experts and the EM Algorithm , 1993, Neural Computation.

[102]  Volker Tresp,et al.  A Bayesian Committee Machine , 2000, Neural Computation.

[103]  Susanne Becken,et al.  Analysing International Tourist Flows to Estimate Energy Use Associated with Air Travel , 2002 .

[104]  Jaroslaw Sobieszczanski-Sobieski,et al.  Multidisciplinary aerospace design optimization - Survey of recent developments , 1996 .

[105]  J G Coffin A study of airplane ranges and useful loads , 1920 .

[106]  Roderick Murray-Smith,et al.  Hierarchical Gaussian process mixtures for regression , 2005, Stat. Comput..

[107]  J. Samareh Aerodynamic Shape Optimization Based on Free-form Deformation , 2004 .

[108]  John C. Vassberg,et al.  Development of a Common Research Model for Applied CFD Validation Studies , 2008 .

[109]  Charbel Farhat,et al.  Sensitivity analysis and design optimization of three‐dimensional non‐linear aeroelastic systems by the adjoint method , 2003 .

[110]  Mohammad Abu-Zurayk,et al.  Development and application of multi-disciplinary optimization capabilities based on high-fidelity methods , 2012 .

[111]  Simon Osindero,et al.  An Alternative Infinite Mixture Of Gaussian Process Experts , 2005, NIPS.

[112]  Wayne L. Tabor,et al.  RESPONSE SURFACE MODEL DEVELOPMENT FOR GLOBAL/LOCAL OPTIMIZATION USING RADIAL BASIS FUNCTIONS* , 2000 .

[113]  David G. Victor,et al.  Global passenger travel: implications for carbon dioxide emissions , 1999 .

[114]  Adrian E. Raftery,et al.  Bayesian Model Averaging: A Tutorial , 2016 .

[115]  Andy J. Keane,et al.  Computational Approaches for Aerospace Design: The Pursuit of Excellence , 2005 .

[116]  Joaquim R. R. A. Martins,et al.  Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes , 2012, Structural and Multidisciplinary Optimization.

[117]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[118]  T. J. Mitchell,et al.  Bayesian Prediction of Deterministic Functions, with Applications to the Design and Analysis of Computer Experiments , 1991 .

[119]  Andy J. Keane,et al.  Efficient Multipoint Aerodynamic Design Optimization Via Cokriging , 2011 .

[120]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[121]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[122]  John C. Vassberg,et al.  Gradient-Based Single and Multi-points Aerodynamic Optimizations with the elsA Software , 2015 .

[123]  J. Alonso,et al.  Aero-Structural Wing Design Optimization Using High-Fidelity Sensitivity Analysis , 2001 .

[124]  Mark Drela,et al.  Pros and Cons of Airfoil Optimization 1 , 2008 .

[125]  Raphael T. Haftka,et al.  Optimization of Flexible Wing Structures Subject to Strength and Induced Drag Constraints , 1977 .

[126]  Jjm Koo Rijpkema,et al.  Use of Design Sensitivity Information in Response Surface and Kriging Metamodels , 2001 .

[127]  Mohammad H. Sadraey Aircraft Design: A Systems Engineering Approach , 2012 .

[128]  Germund Dahlquist,et al.  Numerical Methods in Scientific Computing: Volume 1 , 2008 .

[129]  Hsin Min Wong,et al.  Near-Term Feasibility of Alternative Jet Fuels , 2009 .

[130]  Russell W Stratton,et al.  Quantifying variability in life cycle greenhouse gas inventories of alternative middle distillate transportation fuels. , 2011, Environmental science & technology.

[131]  Anil K. Jain Data clustering: 50 years beyond K-means , 2008, Pattern Recognit. Lett..

[132]  Ching-Hsing Yu,et al.  SciNet: Lessons Learned from Building a Power-efficient Top-20 System and Data Centre , 2010 .

[133]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[134]  J. Martins,et al.  Benchmarking Optimization Algorithms for Wing Aerodynamic Design Optimization , 2014 .

[135]  Sean Wakayama,et al.  BLENDED-WING-BODY OPTIMIZATION PROBLEM SETUP , 2000 .

[136]  M. Stein,et al.  A Bayesian analysis of kriging , 1993 .

[137]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[138]  Farrokh Mistree,et al.  Kriging Models for Global Approximation in Simulation-Based Multidisciplinary Design Optimization , 2001 .

[139]  Georgi Kalitzin,et al.  Unsteady turbomachinery computations using massively parallel platforms , 2006 .

[140]  Andy J. Keane,et al.  Recent advances in surrogate-based optimization , 2009 .

[141]  Søren Nymand Lophaven,et al.  Aspects of the Matlab toolbox DACE , 2002 .

[142]  Mark Drela,et al.  Airframe Design for "Silent Aircraft" , 2007 .

[143]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[144]  Stefan Görtz,et al.  Non-linear reduced order models for steady aerodynamics , 2010, ICCS.

[145]  Joaquim R. R. A. Martins,et al.  Multidisciplinary design optimization: A survey of architectures , 2013 .

[146]  T. Simpson,et al.  Comparative studies of metamodelling techniques under multiple modelling criteria , 2001 .

[147]  D. N. Geary Mixture Models: Inference and Applications to Clustering , 1989 .

[148]  E. J. Hopkins Charts for predicting turbulent skin friction from the Van Driest method (2) , 1972 .

[149]  Joaquim R. R. A. Martins,et al.  An asymmetric suboptimization approach to aerostructural optimization , 2009 .

[150]  Masoud Rais-Rohani,et al.  Integrated aerodynamic-structural design of a transport wing , 1989 .

[151]  Rj Yates,et al.  The Future of International Air Transport , 1985 .

[152]  A. Antoulas,et al.  A Survey of Model Reduction by Balanced Truncation and Some New Results , 2004 .

[153]  Cesare A. Hall,et al.  Improved Range Equation Based on Aircraft Flight Data , 2011 .

[154]  Luc Pronzato,et al.  A comparison between Kriging and radial basis function networks for nonlinear prediction , 1999, NSIP.

[155]  J. Barthelemy,et al.  Two point exponential approximation method for structural optimization , 1990 .

[156]  Ryuzo Takiyama A general method for training the committee machine , 1978, Pattern Recognit..

[157]  T. Simpson,et al.  Computationally Inexpensive Metamodel Assessment Strategies , 2002 .

[158]  Raymond M. Hicks,et al.  Wing design by numerical optimization , 1977 .

[159]  Beckett Yx Zhou,et al.  Airfoil Optimization Using Practical Aerodynamic Design Requirements , 2010 .

[160]  C. Currin,et al.  A Bayesian Approach to the Design and Analysis of Computer Experiments , 1988 .

[161]  Lana Osusky,et al.  A Numerical Methodology for Aerodynamic Shape Optimization in Turbulent Flow Enabling Large Geometric Variation , 2014 .

[162]  Volker Tresp,et al.  Mixtures of Gaussian Processes , 2000, NIPS.

[163]  C. Mader,et al.  Stability-Constrained Aerodynamic Shape Optimization of Flying Wings , 2013 .

[164]  Joseph N. Wilson,et al.  Twenty Years of Mixture of Experts , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[165]  Joaquim R. R. A. Martins,et al.  A parallel aerostructural optimization framework for aircraft design studies , 2014 .

[166]  Joaquim R. R. A. Martins,et al.  Structural and Multidisciplinary Optimization Manuscript No. Pyopt: a Python-based Object-oriented Framework for Nonlinear Constrained Optimization , 2022 .

[167]  Robert Haimes,et al.  Strategies for Multifidelity Optimization with Variable-Dimensional Hierarchical Models , 2006 .

[168]  A. O'Hagan,et al.  Curve Fitting and Optimal Design for Prediction , 1978 .

[169]  Alberto Lovison,et al.  Adaptive sampling with a Lipschitz criterion for accurate metamodeling , 2010 .

[170]  David M. Magerman Statistical Decision-Tree Models for Parsing , 1995, ACL.

[171]  Søren Nymand Lophaven,et al.  DACE - A Matlab Kriging Toolbox, Version 2.0 , 2002 .

[172]  Ralf Zimmermann,et al.  Asymptotic Behavior of the Likelihood Function of Covariance Matrices of Spatial Gaussian Processes , 2010, J. Appl. Math..

[173]  Joaquim R. R. A. Martins,et al.  Aerostructural design optimization of a 100-passenger regional jet with surrogate-based mission analysis , 2013 .

[174]  David W. Hosmer,et al.  Applied Logistic Regression , 1991 .

[175]  R. H. Liebeck,et al.  Design of the Blended-Wing-Body subsonic transport , 2002 .

[176]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[177]  A. Journel,et al.  When do we need a trend model in kriging? , 1989 .

[178]  Joaquim R. R. A. Martins,et al.  Surrogate models and mixtures of experts in aerodynamic performance prediction for mission analysis , 2014 .

[179]  Philippe A. Bonnefoy,et al.  Air transportation in a carbon constrained world: Long-term dynamics of policies and strategies for mitigating the carbon footprint of commercial aviation , 2011 .

[180]  R. Lewis,et al.  A MULTIGRID APPROACH TO THE OPTIMIZATION OF SYSTEMS GOVERNED BY DIFFERENTIAL EQUATIONS , 2000 .

[181]  Joaquim R. R. A. Martins,et al.  A CAD-Free Approach to High-Fidelity Aerostructural Optimization , 2010 .

[182]  Timothy W. Simpson,et al.  Metamodeling in Multidisciplinary Design Optimization: How Far Have We Really Come? , 2014 .

[183]  R. M. Hicks,et al.  An assessment of airfoil design by numerical optimization , 1974 .

[184]  Ilan Kroo,et al.  Subsonic wing planform design using multidisciplinary optimization , 1995 .

[185]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[186]  G. Gary Wang,et al.  Review of Metamodeling Techniques in Support of Engineering Design Optimization , 2007, DAC 2006.

[187]  Daniel P. Raymer,et al.  Aircraft Design: A Conceptual Approach , 1989 .

[188]  K. Willcox,et al.  Aerodynamic Data Reconstruction and Inverse Design Using Proper Orthogonal Decomposition , 2004 .

[189]  Xander Olsthoorn,et al.  Carbon dioxide emissions from international aviation: 1950–2050 , 2001 .

[190]  Zhoujie Lu,et al.  High-Fidelity Aerodynamic Design Optimization of Aircraft Configurations. , 2014 .

[191]  K. Giannakoglou,et al.  Aerodynamic shape design using evolutionary algorithms and new gradient-assisted metamodels , 2006 .

[192]  Ricardo A. Olea,et al.  Sampling design optimization for spatial functions , 1984 .

[193]  David S. Lee,et al.  Aviation and Climate Change: The Science , 2012 .

[194]  Parimal Kopardekar,et al.  Airspace Complexity Measurement: An Air Traffic Control Simulation Analysis , 2009 .

[195]  Mark Drela,et al.  Development of the D8 Transport Configuration , 2011 .

[196]  T. Pulliam,et al.  A comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimization , 2008 .

[197]  Ramana V. Grandhi,et al.  Improved two-point function approximations for design optimization , 1995 .

[198]  Sriram Shankaran,et al.  Aerodynamic-Structural Design Studies of Low-Sweep Transonic Wings , 2008 .

[199]  Raphael T. Haftka,et al.  Integrated aerodynamic/structural design of a sailplane wing , 1986 .

[200]  Art B. Owen,et al.  9 Computer experiments , 1996, Design and analysis of experiments.

[201]  Joaquim R. R. A. Martins,et al.  Multimission Aircraft Fuel-Burn Minimization via Multipoint Aerostructural Optimization , 2015 .

[202]  Charbel Farhat,et al.  Toward Real-Time Computational-Fluid-Dynamics-Based Aeroelastic Computations Using a Database of Reduced-Order Information , 2010 .

[203]  Douglas A. Reynolds Gaussian Mixture Models , 2009, Encyclopedia of Biometrics.

[204]  Naonori Ueda,et al.  Bayesian model search for mixture models based on optimizing variational bounds , 2002, Neural Networks.