An O(n2) algorithm for the bidiagonal SVD
暂无分享,去创建一个
[1] Beresford N. Parlett,et al. An implementation of the dqds algorithm (positive case) , 2000 .
[2] B. Parlett,et al. Relatively robust representations of symmetric tridiagonals , 2000 .
[3] K. V. Fernando,et al. Accurately Counting Singular Values of Bidiagonal Matrices and Eigenvalues of Skew-Symmetric Tridiagonal Matrices , 1999, SIAM J. Matrix Anal. Appl..
[4] I. Dhillon. Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector Problem , 1998 .
[5] Inderjit S. Dhillon,et al. Fernando's solution to Wilkinson's problem: An application of double factorization , 1997 .
[6] K. V. Fernando. On computing an eigenvector of a tridiagonal matrix , 1997 .
[7] Beresford N. Parlett,et al. Invariant subspaces for tightly clustered eigenvalues of tridiagonals , 1996 .
[8] B. Parlett,et al. Accurate singular values and differential qd algorithms , 1994 .
[9] S. Godunov. Guaranteed Accuracy in Numerical Linear Algebra , 1993 .
[10] James Demmel,et al. Accurate Singular Values of Bidiagonal Matrices , 1990, SIAM J. Sci. Comput..
[11] H. Rutishauser. Der Quotienten-Differenzen-Algorithmus , 1954 .
[12] Stanley C. Eisenstat,et al. A Divide-and-Conquer Algorithm for the Bidiagonal SVD , 1995, SIAM J. Matrix Anal. Appl..
[13] V. I. Kostin,et al. Computation of an eigenvector of a symmetric tridiagonal matrix , 1985 .