Multirate Explicit Adams Methods for Time Integration of Conservation Laws
暂无分享,去创建一个
[1] Andreas Bartel,et al. A multirate W-method for electrical networks in state-space formulation , 2002 .
[2] Eitan Tadmor,et al. Strong Stability-Preserving High-Order Time Discretization , 2001 .
[3] J. Dormand,et al. A family of embedded Runge-Kutta formulae , 1980 .
[4] John R. Rice,et al. Split Runge-Kutta method for simultaneous equations , 1960 .
[5] Willem Hundsdorfer,et al. On monotonicity and boundedness properties of linear multistep methods , 2006, Math. Comput..
[6] S. Osher,et al. Very High Order Accurate TVD Schemes , 1986 .
[7] R.. Split Runge-Kutta Method for Simultaneous Equations , 2010 .
[8] S. Osher,et al. Numerical experiments with the Osher upwind scheme for the Euler equations , 1982 .
[9] R. Driscoll,et al. Flowfield Experiments on a DF Chemical Laser , 1983 .
[10] Toshiji Kato,et al. Circuit analysis by a new multirate method , 1999 .
[11] Willem Hundsdorfer,et al. Monotonicity-Preserving Linear Multistep Methods , 2003, SIAM J. Numer. Anal..
[12] Culbert B. Laney,et al. Computational Gasdynamics: Waves , 1998 .
[13] J. Kraaijevanger. Contractivity of Runge-Kutta methods , 1991 .
[14] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[15] D. Kinderlehrer,et al. Oscillation theory, computation, and methods of compensated compactness , 1986 .
[16] A. Harten. High Resolution Schemes for Hyperbolic Conservation Laws , 2017 .
[17] C. W. Gear,et al. Multirate linear multistep methods , 1984 .
[18] Roger Alexander,et al. Solving Ordinary Differential Equations I: Nonstiff Problems (E. Hairer, S. P. Norsett, and G. Wanner) , 1990, SIAM Rev..
[19] S. Osher,et al. Computing with high-resolution upwind schemes for hyperbolic equations , 1985 .
[20] P. Rentrop,et al. Multirate Partitioned Runge-Kutta Methods , 2001 .
[21] Chi-Wang Shu,et al. Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..
[22] Chi-Wang Shu. TVB uniformly high-order schemes for conservation laws , 1987 .
[23] J. F. Andrus,et al. Numerical Solution of Systems of Ordinary Differential Equations Separated into Subsystems , 1979 .
[24] P. Rentrop,et al. Multirate ROW methods and latency of electric circuits , 1993 .
[25] J. Verwer,et al. A positive finite-difference advection scheme , 1995 .
[26] H. Lenferink,et al. Contractivity preserving explicit linear multistep methods , 1989 .
[27] Emil M. Constantinescu,et al. Multirate Timestepping Methods for Hyperbolic Conservation Laws , 2007, J. Sci. Comput..
[28] Ernst Hairer,et al. Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .
[29] Chi-Wang Shu. TVB boundary treatment for numerical solutions of conservation laws , 1987 .
[30] Kevin Burrage,et al. A Jacobi Waveform Relaxation Method for ODEs , 1998, SIAM J. Sci. Comput..
[31] E. Hairer,et al. Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .
[32] R. LeVeque. Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .
[33] H. Lenferink. Contractivity-preserving implicit linear multistep methods , 1991 .
[34] Sukumar Chakravarthy,et al. High Resolution Schemes and the Entropy Condition , 1984 .
[35] Christian Lubich,et al. Multirate extrapolation methods for differential equations with different time scales , 1997, Computing.
[36] Chi-Wang Shu. Total-variation-diminishing time discretizations , 1988 .
[37] J. F. Andrus. Stability of a multi-rate method for numerical integration of ODE's , 1993 .
[38] C. Vreugdenhil,et al. Numerical methods for advection-diffusion problems , 1993 .