Optimization of simulated moving bed and Varicol processes.

A new continuous chromatographic process (Varicol) has been presented recently. Its basic principle consists, in contrast to the traditional simulated moving bed (SMB) technology, of an asynchronous shift of the inlet/outlet lines in a multi-column system with a recycle loop. Due to the stronger influence of the discrete dynamics on the plant behavior, the design of a Varicol process requires the use of model-based optimization to take advantage of the very high flexibility of this process. The equilibrium theory which has been successfully applied to SMB by many practitioners fails to predict the region of complete separation accurately. In this paper, we present a rigorous model-based optimization framework, which can handle the SMB and the novel Varicol process in a systematic manner. The feasibility of the approach is demonstrated by the separation of a mixture of propranolol isomers which exhibits a highly non-linear multi-component adsorption behavior. Experimental results are presented and discussed.

[1]  M. Morbidelli,et al.  Design and optimisation of a simulated moving bed unit: role of deviations from equilibrium theory. , 2000, Journal of chromatography. A.

[2]  D. Ruthven,et al.  Counter-current and simulated counter-current adsorption separation processes , 1989 .

[3]  J. Blehaut,et al.  Recent aspects in simulated moving bed , 1998 .

[4]  S. Engell,et al.  Optimal Operation of Continuous Chromatographic Processes: Mathematical Optimization of the VARICOL Process , 2002 .

[5]  Massimo Morbidelli,et al.  Optimal operation of simulated moving bed units for nonlinear chromatographic separations , 1997 .

[6]  Xinwei Yan Sulfur and nitrogen chemiluminescence detection in gas chromatographic analysis. , 2002, Journal of chromatography. A.

[7]  Michael Schulte,et al.  Simulierte Gegenstromchromatographie: Eine effiziente Technik zur Herstellung optisch aktiver Verbindungen im industriellen Maßstab?: Simulierte Gegenstromchromatographie: Eine effiziente Technik zur Herstellung optisch aktiver Verbindungen im industriellen Maßstab? , 1995 .

[8]  Roger-Marc Nicoud,et al.  Complete design of a simulated moving bed , 1995 .

[9]  G. D. Byrne,et al.  VODE: a variable-coefficient ODE solver , 1989 .

[10]  G. Brunner,et al.  Separation of stereoisomers in a simulated moving bed-supercritical fluid chromatography plant. , 1999, Journal of chromatography. A.

[11]  Sebastian Engell,et al.  Asynchron getaktete Gegenstromchromatographie – Prinzip und optimaler Betrieb , 2002 .

[12]  G. Ganetsos,et al.  Preparative and Production Scale Chromatography , 1992 .

[13]  Anita M. Katti,et al.  Fundamentals of Preparative and Nonlinear Chromatography , 1994 .

[14]  Olivier Ludemann-Hombourger,et al.  The “VARICOL” Process: A New Multicolumn Continuous Chromatographic Process , 2000 .

[15]  M. Morbidelli,et al.  Simulated moving-bed chromatography and its application to chirotechnology. , 2000, Trends in biotechnology.

[16]  Tingyue Gu,et al.  Mathematical Modeling and Scale-up of Liquid Chromatography , 1995 .

[17]  M. Mazzotti,et al.  Supercritical fluid simulated moving bed chromatography II. Langmuir isotherm. , 2001, Journal of chromatography. A.

[18]  G. Dünnebier,et al.  Optimal Design and Operation of Simulated Moving Bed Chromatographic Reactors , 2000 .

[19]  Sebastian Engell,et al.  Model-based optimization and control of chromatographic processes , 2000 .

[20]  Massimo Morbidelli,et al.  Gas chromatographic simulated moving bed separation of the enantiomers of the inhalation anesthetic enflurane , 2000 .