Imposing rigidity constraints on immersed objects in unsteady fluid flows

Imposing rigidity constraints of an immersed elastic body in a transient flow field is not trivial. It requires solution stability and accuracy. In this paper, we present an efficient and accurate algorithm implemented to enforce fluid–structure interface constraints used in the immersed finite element method (IFEM). This interface treatment is a constraint applied onto the rigid bodies based on the fluid structure interaction force evaluated from the immersed solid object. It requires no ad hoc constants or adjustments, thus providing numerical stability and avoiding unnecessary trial-and-error procedures in defining the stiffness of the elastic body. This force term can be evaluated for both uniform and nonuniform fluid grids based on the higher order interpolation function adopted in the IFEM. The ability in handling nonuniform interpolations offers the convenience in modeling arbitrary geometrical shapes and provides solution refinements around interfaces. The results we obtained from flow past a rigid cylinder demonstrate that this convenient way of constraining the interface is a reliable and robust numerical approach to solve unsteady fluid flow interacting with immersed rigid bodies.

[1]  Lucy T. Zhang,et al.  A Parallelized Meshfree Method with Boundary Enrichment for Large-Scale CFD , 2002 .

[2]  John Happel,et al.  Effect of a cylindrical boundary on a fixed rigid sphere in a moving viscous fluid , 1960 .

[3]  C. Williamson Vortex Dynamics in the Cylinder Wake , 1996 .

[4]  W. Shyy,et al.  Regular Article: An Accurate Cartesian Grid Method for Viscous Incompressible Flows with Complex Immersed Boundaries , 1999 .

[5]  M. D. Olson,et al.  Numerical studies of the flow around a circular cylinder by a finite element method , 1978 .

[6]  F. White Viscous Fluid Flow , 1974 .

[7]  P. Gresho Incompressible Fluid Dynamics: Some Fundamental Formulation Issues , 1991 .

[8]  M. Lai,et al.  An Immersed Boundary Method with Formal Second-Order Accuracy and Reduced Numerical Viscosity , 2000 .

[9]  S. Schwarzer,et al.  Navier-Stokes simulation with constraint forces: finite-difference method for particle-laden flows and complex geometries. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  A. S. Grove,et al.  An experimental investigation of the steady separated flow past a circular cylinder , 1964, Journal of Fluid Mechanics.

[11]  Rudolf Ladenburg,et al.  Über den Einfluß von Wänden auf die Bewegung einer Kugel in einer reibenden Flüssigkeit , 1907 .

[12]  Wing Kam Liu,et al.  Modelling and simulation of fluid structure interaction by meshfree and FEM , 2003 .

[13]  Lucy T. Zhang,et al.  Stent modeling using immersed finite element method , 2006 .

[14]  Randall J. LeVeque,et al.  Immersed Interface Methods for Stokes Flow with Elastic Boundaries or Surface Tension , 1997, SIAM J. Sci. Comput..

[15]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[16]  L. Sirovich,et al.  Modeling a no-slip flow boundary with an external force field , 1993 .

[17]  David Farrell,et al.  Immersed finite element method and its applications to biological systems. , 2006, Computer methods in applied mechanics and engineering.

[18]  Madeleine Coutanceau,et al.  Circular Cylinder Wake Configurations: A Flow Visualization Survey , 1991 .

[19]  Tayfun E. Tezduyar,et al.  On the downstream boundary conditions for the vorticity-stream function formulation of two-dimensional incompressible flows , 1991 .

[20]  Wing Kam Liu,et al.  Extended immersed boundary method using FEM and RKPM , 2004 .

[21]  H. Brauer,et al.  Fluiddynamik bei quer angeströmten Zylindern , 1975 .

[22]  R. Clift,et al.  Bubbles, Drops, and Particles , 1978 .

[23]  Wing Kam Liu,et al.  Meshfree and particle methods and their applications , 2002 .

[24]  T. Tezduyar,et al.  Numerical Experiments on Downstream Boundary of Flow Past Cylinder , 1991 .

[25]  Zhilin Li,et al.  The immersed interface method for the Navier-Stokes equations with singular forces , 2001 .

[26]  Haecheon Choi,et al.  Numerical solutions of flow past a circular cylinder at Reynolds numbers up to 160 , 1998 .

[27]  S. Dennis,et al.  Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100 , 1970, Journal of Fluid Mechanics.

[28]  Lucy T. Zhang,et al.  Immersed finite element method , 2004 .

[29]  R. LeVeque,et al.  A comparison of the extended finite element method with the immersed interface method for elliptic equations with discontinuous coefficients and singular sources , 2006 .

[30]  S. Mittal,et al.  Incompressible flow past a circular cylinder: dependence of the computed flow field on the location of the lateral boundaries , 1995 .

[31]  S. Biringen,et al.  Numerical Simulation of a Cylinder in Uniform Flow , 1996 .

[32]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[33]  A. Roshko On the Wake and Drag of Bluff Bodies , 1955 .

[34]  Lucy T. Zhang Immersed finite element method for fluid-structure interactions , 2007 .

[35]  Jungwoo Kim,et al.  An immersed-boundary finite-volume method for simulations of flow in complex geometries , 2001 .

[36]  R. Verzicco,et al.  Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations , 2000 .

[37]  A. Fogelson,et al.  A fast numerical method for solving the three-dimensional Stokes' equations in the presence of suspended particles , 1988 .

[38]  Khodor Khadra,et al.  Fictitious domain approach for numerical modelling of Navier–Stokes equations , 2000 .

[39]  Kyung K. Choi,et al.  Numerical method for shape optimization using meshfree method , 2002 .

[40]  R. Glowinski,et al.  A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow , 2001 .

[41]  D. J. Tritton,et al.  A note on vortex streets behind circular cylinders at low Reynolds numbers , 1971, Journal of Fluid Mechanics.

[42]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[43]  J. Damasceno,et al.  Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method , 2003 .

[44]  B. Fornberg A numerical study of steady viscous flow past a circular cylinder , 1980, Journal of Fluid Mechanics.

[45]  Lucy T. Zhang,et al.  Coupling of Navier–Stokes equations with protein molecular dynamics and its application to hemodynamics , 2004 .