Design for dynamic operation - A review and new perspectives for an increasingly dynamic plant operating environment

Abstract In this paper, we review applications of dynamic optimization for design, control, and operation. This paper presents a review of approaches toward the analysis of the interaction between design and dynamic performance, focusing in particular on dynamic optimization as an overarching framework. In addition to operation around a steady-state point, we consider two additional classes of application: intentionally dynamic, and intrinsically dynamic processes. The intentionally dynamic processes exploit transition dynamics in response to variation brought about by trends of increased globalization, market volatility, and fluctuations in electricity prices. The second category, intrinsically dynamic processes, does not allow design based on steady-state mass and energy balances, but the intra-cycle and inter-cycle dynamics should be taken into account when optimizing the design, control, and operation. Our study includes a description and discussion of advances in these areas.

[1]  Yasunobu Inoue,et al.  The simulated moving-bed reactor for production of bisphenol A , 1999 .

[2]  Gürkan Sin,et al.  Integration of process design and controller design for chemical processes using model-based methodology , 2010, Comput. Chem. Eng..

[3]  David D. Brengel,et al.  Coordinated design and control optimization of nonlinear processes , 1992 .

[4]  Yoshiaki Kawajiri,et al.  Multi-column chromatographic process development using simulated moving bed superstructure and simultaneous optimization – Model correction framework , 2014 .

[5]  A. Seidel-Morgenstern,et al.  Theoretical Analysis of Heat Integration in a Periodically Operated Cascade of Catalytic Fixed-Bed Reactors , 2009 .

[6]  Andrew G. Salinger,et al.  The direct calculation of periodic states of the reverse flow reactior—I. Methodology and propane combustion results , 1996 .

[7]  Jeffrey Raymond Hufton,et al.  Production of hydrogen by cyclic sorption enhanced reaction process , 2001 .

[8]  Luis A. Ricardez-Sandoval,et al.  Simultaneous Design and Control: A New Approach and Comparisons with Existing Methodologies , 2010 .

[9]  Luis A. Ricardez-Sandoval,et al.  Stochastic Back-Off Approach for Integration of Design and Control Under Uncertainty , 2018 .

[10]  Manfred Morari,et al.  Design of resilient processing plants—V: The effect of deadtime on dynamic resilience , 1985 .

[11]  Efstratios N. Pistikopoulos,et al.  Recent advances in optimization-based simultaneous process and control design , 2004, Comput. Chem. Eng..

[12]  Efstratios N. Pistikopoulos,et al.  Optimal design of dynamic systems under uncertainty , 1996 .

[13]  Michael Baldea,et al.  Optimal Process Operations in Fast-Changing Electricity Markets: Framework for Scheduling with Low-Order Dynamic Models and an Air Separation Application , 2016 .

[14]  Christopher L.E. Swartz,et al.  Inclusion of model uncertainty in a computational framework for dynamic operability assessment , 1997 .

[15]  Christopher L.E. Swartz,et al.  Simultaneous Solution Strategies for Inclusion of Input Saturation in the Optimal Design of Dynamically Operable Plants , 2004 .

[16]  Manfred Morari,et al.  Design of resilient processing plants—III: A general framework for the assessment of dynamic resilience , 1983 .

[17]  Efstratios N. Pistikopoulos,et al.  Simultaneous design and control optimisation under uncertainty , 2000 .

[18]  J. A. Bandoni,et al.  Integrated flexibility and controllability analysis in design of chemical processes , 1997 .

[19]  Christopher L.E. Swartz,et al.  The Application of Dynamic Operability Assessment to Flotation Circuit Design , 1995 .

[20]  S. Nilchan,et al.  On the Optimisation of Periodic Adsorption Processes , 1998 .

[21]  Thomas F. Edgar,et al.  Smart manufacturing, manufacturing intelligence and demand-dynamic performance , 2012, Comput. Chem. Eng..

[22]  Christodoulos A. Floudas,et al.  Analyzing the interaction of design and control—1. A multiobjective framework and application to binary distillation synthesis , 1994 .

[23]  Jacob A. Moulijn,et al.  Dynamic operation of chemical reactors : friend or foe? , 1998 .

[24]  G. Dünnebier,et al.  Optimal Design and Operation of Simulated Moving Bed Chromatographic Reactors , 2000 .

[25]  Efstratios N. Pistikopoulos,et al.  Towards the integration of process design, control and scheduling: Are we getting closer? , 2016, Comput. Chem. Eng..

[26]  Luís S. Pais,et al.  Cyclic steady state of simulated moving bed processes for enantiomers separation , 2003 .

[27]  G. Bunimovich,et al.  Reverse-Flow Operation in Fixed Bed Catalytic Reactors , 1996 .

[28]  Dirk Roose,et al.  An Adaptive Newton-Picard Algorithm with Subspace Iteration for Computing Periodic Solutions , 1998, SIAM J. Sci. Comput..

[29]  J. M. Douglas Periodic Reactor Operation , 1967 .

[30]  Andrzej Stankiewicz,et al.  An industrial view on the dynamic operation of chemical converters , 1995 .

[31]  Ulrike Krewer,et al.  Future Challenges in Heterogeneous Catalysis: Understanding Catalysts under Dynamic Reaction Conditions , 2016, ChemCatChem.

[32]  Lorenz T. Biegler,et al.  Optimization of a Pressure-Swing Adsorption Process Using Zeolite 13X for CO2 Sequestration , 2003 .

[33]  Hernan Alvarez,et al.  Robust Integrated Design of processes with terminal penalty model predictive controllers , 2011 .

[34]  Efstratios N. Pistikopoulos,et al.  Optimization-Based Methodologies for Integrating Design and Control in Cryogenic Plants , 2002 .

[35]  M. Douglas LeVan,et al.  Periodic states of adsorption cycles. I: Direct determination and stability , 1994 .

[36]  Mohamed Soliman,et al.  A mixed-integer formulation for back-off under constrained predictive control , 2008, Comput. Chem. Eng..

[37]  Luis A. Ricardez-Sandoval,et al.  Optimal design and control of dynamic systems under uncertainty: A probabilistic approach , 2012, Comput. Chem. Eng..

[38]  H. Bock,et al.  A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems , 1984 .

[39]  L. Biegler An overview of simultaneous strategies for dynamic optimization , 2007 .

[40]  I. D. Washington,et al.  Design under uncertainty using parallel multiperiod dynamic optimization , 2014 .

[41]  Arvind Rajendran,et al.  Simulated moving bed chromatography for the separation of enantiomers. , 2009, Journal of chromatography. A.

[42]  Thomas A. Adams,et al.  Integrated design and control of semicontinuous distillation systems utilizing mixed integer dynamic optimization , 2016, Comput. Chem. Eng..

[43]  Lorenz T. Biegler,et al.  New directions for nonlinear process optimization , 2018, Current Opinion in Chemical Engineering.

[44]  Alírio E. Rodrigues,et al.  Simulated Moving Bed Chromatography: From Concept to Proof‐of‐Concept , 2012 .

[45]  Christodoulos A. Floudas,et al.  Interaction of Design and Control: Optimization with Dynamic Models , 1998 .

[46]  Andreas Kroll,et al.  Integrated scheduling and dynamic optimization of grade transitions for a continuous polymerization reactor , 2008, Comput. Chem. Eng..

[47]  Donald J. Chmielewski,et al.  A two-stage procedure for the optimal sizing and placement of grid-level energy storage , 2018, Comput. Chem. Eng..

[48]  Malte Kaspereit,et al.  New Developments in Simulated Moving Bed Chromatography , 2008 .

[49]  Cristian Grossmann,et al.  ‘Cycle to cycle’ optimizing control of simulated moving beds , 2008 .

[50]  Albert Renken,et al.  Periodic operation of catalytic reactors—introduction and overview , 1995 .

[51]  W. H. Ray,et al.  Optimal control policies for tubular reactors experiencing catalyst decay. Part 1. Single bed reactors , 1971 .

[52]  L. Biegler,et al.  An Inexact Trust-Region Algorithm for the Optimization of Periodic Adsorption Processes , 2010 .

[53]  Luis A. Ricardez-Sandoval,et al.  Integration of design and control for chemical processes: A review of the literature and some recent results , 2009, Annu. Rev. Control..

[54]  Malte Kaspereit,et al.  Shortcut method for evaluation and design of a hybrid process for enantioseparations. , 2005, Journal of chromatography. A.

[55]  Alan R. Champneys,et al.  A Newton-Picard shooting method for computing periodic solutions of large-scale dynamical systems , 1995 .

[56]  Thomas A. Adams,et al.  Subspace model identification and model predictive control based cost analysis of a semicontinuous distillation process , 2017, Comput. Chem. Eng..

[57]  Efstratios N. Pistikopoulos,et al.  Perspectives in Multiparametric Programming and Explicit Model Predictive Control , 2009 .

[58]  Manfred Morari,et al.  Design of resilient processing plants. VI: The effect of right-half-plane zeros on dynamic resilience , 1985 .

[59]  Sebastian Engell,et al.  Optimization-based control of a reactive simulated moving bed process for glucose isomerization , 2004 .

[60]  Ernst Dieter Gilles,et al.  A new concept for operating simulated moving-bed processes , 1999 .

[61]  Luis A. Ricardez-Sandoval,et al.  Simultaneous design and MPC-based control for dynamic systems under uncertainty: A stochastic approach , 2014, Comput. Chem. Eng..

[62]  J. A. Bandoni,et al.  Economic impact of disturbances and uncertain parameters in chemical processes—A dynamic back-off analysis , 1996 .

[63]  Efstratios N. Pistikopoulos,et al.  Optimal grade transition and selection of closed-loop controllers in a gas-phase olefin polymerization fluidized bed reactor , 2003 .

[64]  James E. Bailey,et al.  PERIODIC OPERATION OF CHEMICAL REACTORS: A REVIEW , 1974 .

[65]  Luis A. Ricardez-Sandoval,et al.  Integration of Design and Control of Dynamic Systems under Uncertainty: A New Back-Off Approach , 2016 .

[66]  Timothy C. Frank,et al.  Model-based design and experimental validation of simulated moving bed reactor for production of glycol ether ester , 2016 .

[67]  Thomas A. Adams,et al.  Semicontinuous Thermal Separation Systems , 2012 .

[68]  Lorenz T. Biegler,et al.  Simulation and optimization of pressure-swing adsorption systems for air separation , 2003 .

[69]  W. Chueh,et al.  A new solar fuels reactor concept based on a liquid metal heat transfer fluid: Reactor design and efficiency estimation , 2015 .

[70]  Christopher L.E. Swartz A computational framework for dynamic operability assessment , 1996 .

[71]  Rafiqul Gani,et al.  State‐of‐the‐art and progress in the optimization‐based simultaneous design and control for chemical processes , 2012 .

[72]  Yoshiaki Kawajiri,et al.  Experimental Validation of Optimized Model-Based Startup Acceleration Strategies for Simulated Moving Bed Chromatography , 2014 .

[73]  Luis A. Ricardez-Sandoval,et al.  Simultaneous process synthesis and control design under uncertainty: A worst-case performance approach , 2013 .

[74]  Sharad Bhartiya,et al.  Optimal strategies for transitions in simulated moving bed chromatography , 2016, Comput. Chem. Eng..

[75]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[76]  Ronald W. Rousseau,et al.  Optimal Design of Integrated SMB-Crystallization Hybrid Separation Process Using a Binary Solvent , 2017 .

[77]  Efstratios N. Pistikopoulos,et al.  Process design and control optimization: A simultaneous approach by multi‐parametric programming , 2017 .

[78]  Arthur W. Westerberg,et al.  Acceleration of cyclic steady state convergence for pressure swing adsorption models , 1992 .

[79]  J. D. Perkins,et al.  A case study in simultaneous design and control using rigorous, mixed-integer dynamic optimization models , 2002 .

[80]  Mariano Asteasuain,et al.  Simultaneous process and control system design for grade transition in styrene polymerization , 2006 .

[81]  Matthias Heinemann,et al.  Integrated operation of continuous chromatography and biotransformations for the generic high yield production of fine chemicals. , 2006, Journal of biotechnology.

[83]  Efstratios N. Pistikopoulos,et al.  Parametric controllers in simultaneous process and control design optimization , 2003 .

[84]  George Stephanopoulos,et al.  Studies in the synthesis of control structures for chemical processes: Part IV. Design of steady‐state optimizing control structures for chemical process units , 1980 .

[85]  K. S. Knaebel,et al.  Pressure swing adsorption , 1993 .

[86]  Warren D. Seider,et al.  Semicontinuous, middle-vessel distillation of ternary mixtures , 2000 .

[87]  Luis A. Ricardez-Sandoval,et al.  Integration of scheduling, design, and control of multiproduct chemical processes under uncertainty , 2015 .

[88]  Ioannis K. Kookos,et al.  An Algorithm for Simultaneous Process Design and Control , 2001 .

[89]  Manfred Morari,et al.  Design of resilient processing plants—I Process design under consideration of dynamic aspects , 1982 .

[90]  Ignacio E. Grossmann,et al.  Air separation with cryogenic energy storage: Optimal scheduling considering electric energy and reserve markets , 2015 .

[91]  Massimo Morbidelli,et al.  Multiobjective optimization of simulated moving bed and Varicol processes using a genetic algorithm. , 2003, Journal of chromatography. A.

[92]  John D. Perkins,et al.  Interaction between process design and process control: the role of open-loop indicators , 1991 .

[93]  Andreas A. Linninger,et al.  Integrated design and control under uncertainty: Embedded control optimization for plantwide processes , 2011, Comput. Chem. Eng..

[94]  Efstratios N. Pistikopoulos,et al.  New algorithms for mixed-integer dynamic optimization , 2003, Comput. Chem. Eng..

[95]  Geoff Barton,et al.  Interaction between process design and process control: economic analysis of process dynamics , 1991 .

[96]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[97]  G. Ganetsos,et al.  Preparative and Production Scale Chromatography , 1992 .

[98]  Christopher L.E. Swartz,et al.  Optimization-based assessment of design limitations to air separation plant agility in demand response scenarios , 2015 .

[99]  L. Biegler,et al.  Optimization strategies for simulated moving bed and PowerFeed processes , 2006 .