A Brief Survey on Constructing homoclinic Structures of soliton Equations
暂无分享,去创建一个
[1] M. Wadati,et al. Coupled Hybrid Nonlinear Schrödinger Equation and Optical Solitons , 1994 .
[2] V. Zakharov,et al. Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .
[3] Y. Li. Chaos and Shadowing Lemma for Autonomous Systems of Infinite Dimensions , 2002, nlin/0203024.
[4] I. Stewart,et al. Bounded solutions for non-autonomous parabolic equations , 1996 .
[5] C. Blázquez. Transverse homoclinic orbits in periodically perturbed parabolic equations , 1986 .
[6] V. Matveev,et al. Darboux Transformations and Solitons , 1992 .
[7] H. McKean. The sine‐gordon and sinh‐gordon equations on the circle , 1981 .
[8] David W. McLaughlin,et al. Whiskered Tori for Integrable Pde’s: Chaotic Behavior in Near Integrable Pde’s , 1995 .
[9] Mark J. Ablowitz,et al. Computational chaos in the nonlinear Schrödinger equation without homoclinic crossings , 1996 .
[10] E. Doktorov,et al. Homoclinic orbits for soliton equations solvable via the quadratic bundle , 2003 .
[11] Annalisa Calini,et al. Mel'nikov analysis of numerically induced chaos in the nonlinear Schro¨dinger equation , 1996 .
[12] Jacques Hurtubise,et al. Isospectral Hamiltonian flows in finite and infinite dimensions , 1990 .
[13] J. Shatah,et al. Homoclinic orbits for the perturbed sine‐Gordon equation , 2000 .
[14] Henry P. McKean,et al. Hill’s Operator and Hyperelliptic Function Theory in the Presence of Infinitely Many Branch Points , 1976 .
[15] Ricardo Rosa,et al. Chaos for a damped and forced KdV equation , 2004 .
[16] Chaos in driven Alfvén systems: boundary and interior crises , 2004 .
[17] David W. McLaughlin,et al. Geometry of the modulational instability III. Homoclinic orbits for the periodic sine-Gordon equation , 1990 .
[18] Vladimir E. Zakharov,et al. A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I , 1974 .
[19] Vassilios M. Rothos. Existence of homoclinic tubes in the sine-Gordon equation with Hamiltonian perturbation , 1999 .
[21] Susumu Takeda,et al. Modified Nonlinear Schrödinger Equation for Alfvén Waves Propagating along the Magnetic Field in Cold Plasmas , 1975 .
[22] Carlos Tomei,et al. Inverse scattering for self-adjoint nth order differential operators on the line , 1987 .
[23] Wolfgang K. Schief,et al. Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory , 2002 .
[24] David H. Sattinger,et al. Gauge theory of Ba¨cklund transformations, II , 1987 .
[25] J. Moser,et al. Geometry of Quadrics and Spectral Theory , 1980 .
[26] A. C.-L. Chian,et al. Alfvén Boundary Crisis , 2002, Int. J. Bifurc. Chaos.
[27] Jalal Shatah,et al. PERSISTENT HOMOCLINIC ORBITS FOR A PERTURBED NONLINEAR SCHRODINGER EQUATION , 1996 .
[28] Valery S. Shchesnovich,et al. Modified Manakov system with self-consistent source , 1996 .
[29] Hon-Wah Tam,et al. Homoclinic Orbits for the Coupled Schrödinger–Boussinesq Equation and Coupled Higgs Equation , 2003 .
[30] A. Ambrosetti,et al. Homoclinics: Poincaré-Melnikov type results via a variational approach , 1998 .
[31] E. Mjølhus,et al. On the modulational instability of hydromagnetic waves parallel to the magnetic field , 1976, Journal of Plasma Physics.
[32] H. Sakaguchi. Chaotic dynamics of an unstable burgers equation , 1999 .
[33] Y. C. Li. Existence of chaos for nonlinear Schrödinger equation under singular perturbations , 2004 .
[34] Stephen Wiggins. Global Bifurcations and Chaos: Analytical Methods , 1988 .
[35] Y. Charles Li,et al. Lax Pairs and Darboux Transformations for Euler Equations , 2001, math/0101214.
[36] B. Guo,et al. Homoclinic orbits for the coupled nonlinear Schrödinger system and long–short wave equation ☆ , 2005 .
[37] Chongchun Zeng,et al. Homoclinic orbits for a perturbed nonlinear Schrödinger equation , 2000 .
[38] M. Gregory Forest,et al. On the Bäcklund-gauge transformation and homoclinic orbits of a coupled nonlinear Schrödinger system , 2000 .
[39] L. Debnath. Advances in nonlinear waves , 1984 .
[40] Y. Li. Singularly Perturbed Vector and Scalar Nonlinear Schrödinger Equations with Persistent Homoclinic Orbits , 2002, math/0205113.
[41] M. Wadati,et al. A Generalization of Inverse Scattering Method , 1979 .
[42] Y. Charles Li,et al. B{ä}cklund-Darboux Transformations and Melnikov Analysis for Davey-Stewartson II Equations , 2000, J. Nonlinear Sci..
[43] P. Lax. INTEGRALS OF NONLINEAR EQUATIONS OF EVOLUTION AND SOLITARY WAVES. , 1968 .
[44] Stephen Wiggins,et al. Global Bifurcations and Chaos , 1988 .
[45] Chris Antonopoulos,et al. Chaos in a Near-integrable Hamiltonian Lattice , 2002, Int. J. Bifurc. Chaos.
[46] Hammack,et al. Modulated periodic stokes waves in deep water , 2000, Physical review letters.
[47] M. Gregory Forest,et al. Nonfocusing Instabilities in Coupled, Integrable Nonlinear Schrödinger pdes , 2000, J. Nonlinear Sci..
[48] Spatiotemporal chaos in spatially extended systems , 2001 .
[49] S. V. Manakov. On the theory of two-dimensional stationary self-focusing of electromagnetic waves , 1973 .
[50] M. A. Malkov. Spatial chaos in weakly dispersive and viscous media: a nonperturbative theory of the driven KdV-Burgers equation , 1996 .
[51] M. Ablowitz,et al. The Inverse scattering transform fourier analysis for nonlinear problems , 1974 .
[52] C. S. Gardner,et al. Method for solving the Korteweg-deVries equation , 1967 .
[53] Hugo D. Wahlquist,et al. Backlund transformation for solutions of the Korteweg-de Vries equation , 1973 .
[54] V. Rothos. Homoclinic intersections and Mel'nikov method for perturbed sine-Gordon equation , 2001 .
[55] M. Chipot,et al. Equilibria, Connecting Orbits and a Priori Bounds for Semilinear Parabolic Equations with Nonlinear Boundary Conditions , 2004 .
[56] Mark J. Ablowitz,et al. On homoclinic structure and numerically induced chaos for the nonlinear Schro¨dinger equation , 1990 .
[57] M. Gregory Forest,et al. Spectral theory for the periodic sine‐Gordon equation: A concrete viewpoint , 1982 .
[58] P. Clarkson,et al. Painleve analysis of the non-linear Schrodinger family of equations , 1987 .
[59] M. R. Adams,et al. Darboux coordinates and Liouville-Arnold integration in loop algebras , 1993 .
[60] Y. Li. Smale Horseshoes and Symbolic Dynamics in Perturbed Nonlinear Schrödinger Equations , 1999 .
[61] Daizhan Cheng,et al. A New Chaotic System and Beyond: the Generalized Lorenz-like System , 2004, Int. J. Bifurc. Chaos.
[62] Alan R. Bishop,et al. Quasi-periodic route to chaos in a near-integrable PDE: Homoclinic crossings , 1988 .