A Brief Survey on Constructing homoclinic Structures of soliton Equations

To give rigorous mathematical proofs of chaotic behaviors in a given system, it is necessary to identify the homoclinic structures in the system. In this tutorial review, methods for constructing explicit solutions for nonlinear partial differential equations are presented, with more emphasis placed on those utilizing complete integrability associated with soliton equations. As an extended application, homoclinic orbits to spatial uniform plane waves of coupled modified nonlinear Schrodinger equations are obtained via the dressing method. During the procedure, it is necessary to introduce the Lax pair for these coupled equations, as well as its Floquet spectral analysis and corresponding Bloch functions.

[1]  M. Wadati,et al.  Coupled Hybrid Nonlinear Schrödinger Equation and Optical Solitons , 1994 .

[2]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .

[3]  Y. Li Chaos and Shadowing Lemma for Autonomous Systems of Infinite Dimensions , 2002, nlin/0203024.

[4]  I. Stewart,et al.  Bounded solutions for non-autonomous parabolic equations , 1996 .

[5]  C. Blázquez Transverse homoclinic orbits in periodically perturbed parabolic equations , 1986 .

[6]  V. Matveev,et al.  Darboux Transformations and Solitons , 1992 .

[7]  H. McKean The sine‐gordon and sinh‐gordon equations on the circle , 1981 .

[8]  David W. McLaughlin,et al.  Whiskered Tori for Integrable Pde’s: Chaotic Behavior in Near Integrable Pde’s , 1995 .

[9]  Mark J. Ablowitz,et al.  Computational chaos in the nonlinear Schrödinger equation without homoclinic crossings , 1996 .

[10]  E. Doktorov,et al.  Homoclinic orbits for soliton equations solvable via the quadratic bundle , 2003 .

[11]  Annalisa Calini,et al.  Mel'nikov analysis of numerically induced chaos in the nonlinear Schro¨dinger equation , 1996 .

[12]  Jacques Hurtubise,et al.  Isospectral Hamiltonian flows in finite and infinite dimensions , 1990 .

[13]  J. Shatah,et al.  Homoclinic orbits for the perturbed sine‐Gordon equation , 2000 .

[14]  Henry P. McKean,et al.  Hill’s Operator and Hyperelliptic Function Theory in the Presence of Infinitely Many Branch Points , 1976 .

[15]  Ricardo Rosa,et al.  Chaos for a damped and forced KdV equation , 2004 .

[16]  Chaos in driven Alfvén systems: boundary and interior crises , 2004 .

[17]  David W. McLaughlin,et al.  Geometry of the modulational instability III. Homoclinic orbits for the periodic sine-Gordon equation , 1990 .

[18]  Vladimir E. Zakharov,et al.  A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I , 1974 .

[19]  Vassilios M. Rothos Existence of homoclinic tubes in the sine-Gordon equation with Hamiltonian perturbation , 1999 .

[21]  Susumu Takeda,et al.  Modified Nonlinear Schrödinger Equation for Alfvén Waves Propagating along the Magnetic Field in Cold Plasmas , 1975 .

[22]  Carlos Tomei,et al.  Inverse scattering for self-adjoint nth order differential operators on the line , 1987 .

[23]  Wolfgang K. Schief,et al.  Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory , 2002 .

[24]  David H. Sattinger,et al.  Gauge theory of Ba¨cklund transformations, II , 1987 .

[25]  J. Moser,et al.  Geometry of Quadrics and Spectral Theory , 1980 .

[26]  A. C.-L. Chian,et al.  Alfvén Boundary Crisis , 2002, Int. J. Bifurc. Chaos.

[27]  Jalal Shatah,et al.  PERSISTENT HOMOCLINIC ORBITS FOR A PERTURBED NONLINEAR SCHRODINGER EQUATION , 1996 .

[28]  Valery S. Shchesnovich,et al.  Modified Manakov system with self-consistent source , 1996 .

[29]  Hon-Wah Tam,et al.  Homoclinic Orbits for the Coupled Schrödinger–Boussinesq Equation and Coupled Higgs Equation , 2003 .

[30]  A. Ambrosetti,et al.  Homoclinics: Poincaré-Melnikov type results via a variational approach , 1998 .

[31]  E. Mjølhus,et al.  On the modulational instability of hydromagnetic waves parallel to the magnetic field , 1976, Journal of Plasma Physics.

[32]  H. Sakaguchi Chaotic dynamics of an unstable burgers equation , 1999 .

[33]  Y. C. Li Existence of chaos for nonlinear Schrödinger equation under singular perturbations , 2004 .

[34]  Stephen Wiggins Global Bifurcations and Chaos: Analytical Methods , 1988 .

[35]  Y. Charles Li,et al.  Lax Pairs and Darboux Transformations for Euler Equations , 2001, math/0101214.

[36]  B. Guo,et al.  Homoclinic orbits for the coupled nonlinear Schrödinger system and long–short wave equation ☆ , 2005 .

[37]  Chongchun Zeng,et al.  Homoclinic orbits for a perturbed nonlinear Schrödinger equation , 2000 .

[38]  M. Gregory Forest,et al.  On the Bäcklund-gauge transformation and homoclinic orbits of a coupled nonlinear Schrödinger system , 2000 .

[39]  L. Debnath Advances in nonlinear waves , 1984 .

[40]  Y. Li Singularly Perturbed Vector and Scalar Nonlinear Schrödinger Equations with Persistent Homoclinic Orbits , 2002, math/0205113.

[41]  M. Wadati,et al.  A Generalization of Inverse Scattering Method , 1979 .

[42]  Y. Charles Li,et al.  B{ä}cklund-Darboux Transformations and Melnikov Analysis for Davey-Stewartson II Equations , 2000, J. Nonlinear Sci..

[43]  P. Lax INTEGRALS OF NONLINEAR EQUATIONS OF EVOLUTION AND SOLITARY WAVES. , 1968 .

[44]  Stephen Wiggins,et al.  Global Bifurcations and Chaos , 1988 .

[45]  Chris Antonopoulos,et al.  Chaos in a Near-integrable Hamiltonian Lattice , 2002, Int. J. Bifurc. Chaos.

[46]  Hammack,et al.  Modulated periodic stokes waves in deep water , 2000, Physical review letters.

[47]  M. Gregory Forest,et al.  Nonfocusing Instabilities in Coupled, Integrable Nonlinear Schrödinger pdes , 2000, J. Nonlinear Sci..

[48]  Spatiotemporal chaos in spatially extended systems , 2001 .

[49]  S. V. Manakov On the theory of two-dimensional stationary self-focusing of electromagnetic waves , 1973 .

[50]  M. A. Malkov Spatial chaos in weakly dispersive and viscous media: a nonperturbative theory of the driven KdV-Burgers equation , 1996 .

[51]  M. Ablowitz,et al.  The Inverse scattering transform fourier analysis for nonlinear problems , 1974 .

[52]  C. S. Gardner,et al.  Method for solving the Korteweg-deVries equation , 1967 .

[53]  Hugo D. Wahlquist,et al.  Backlund transformation for solutions of the Korteweg-de Vries equation , 1973 .

[54]  V. Rothos Homoclinic intersections and Mel'nikov method for perturbed sine-Gordon equation , 2001 .

[55]  M. Chipot,et al.  Equilibria, Connecting Orbits and a Priori Bounds for Semilinear Parabolic Equations with Nonlinear Boundary Conditions , 2004 .

[56]  Mark J. Ablowitz,et al.  On homoclinic structure and numerically induced chaos for the nonlinear Schro¨dinger equation , 1990 .

[57]  M. Gregory Forest,et al.  Spectral theory for the periodic sine‐Gordon equation: A concrete viewpoint , 1982 .

[58]  P. Clarkson,et al.  Painleve analysis of the non-linear Schrodinger family of equations , 1987 .

[59]  M. R. Adams,et al.  Darboux coordinates and Liouville-Arnold integration in loop algebras , 1993 .

[60]  Y. Li Smale Horseshoes and Symbolic Dynamics in Perturbed Nonlinear Schrödinger Equations , 1999 .

[61]  Daizhan Cheng,et al.  A New Chaotic System and Beyond: the Generalized Lorenz-like System , 2004, Int. J. Bifurc. Chaos.

[62]  Alan R. Bishop,et al.  Quasi-periodic route to chaos in a near-integrable PDE: Homoclinic crossings , 1988 .