Clique decompositions of multipartite graphs and completion of Latin squares

Our main result essentially reduces the problem of finding an edge-decomposition of a balanced r-partite graph of large minimum degree into r-cliques to the problem of finding a fractional r-clique decomposition or an approximate one. Together with very recent results of Bowditch and Dukes as well as Montgomery on fractional decompositions into triangles and cliques respectively, this gives the best known bounds on the minimum degree which ensures an edge-decomposition of an r-partite graph into r-cliques (subject to trivially necessary divisibility conditions). The case of triangles translates into the setting of partially completed Latin squares and more generally the case of r-cliques translates into the setting of partially completed mutually orthogonal Latin squares.

[1]  T. Gustavsson Decompositions of large graphs and digraphs with high minimum degree , 1991 .

[2]  Deryk Osthus,et al.  The existence of designs via iterative absorption , 2016 .

[3]  Kseniya Garaschuk,et al.  Linear methods for rational triangle decompositions , 2014 .

[4]  Rajeev Raman,et al.  The Power of Collision: Randomized Parallel Algorithms for Chaining and Integer Sorting , 1990, FSTTCS.

[5]  Vojtech Rödl,et al.  Integer and Fractional Packings in Dense Graphs , 2001, Comb..

[6]  Daniela Kühn,et al.  On the decomposition threshold of a given graph , 2016, J. Comb. Theory, Ser. B.

[7]  Peter Keevash,et al.  A Geometric Theory for Hypergraph Matching , 2011, 1108.1757.

[8]  Klas Markström,et al.  Restricted completion of sparse partial Latin squares , 2019, Comb. Probab. Comput..

[9]  François Dross,et al.  Fractional Triangle Decompositions in Graphs with Large Minimum Degree , 2015, SIAM J. Discret. Math..

[10]  Richard Montgomery,et al.  Fractional Clique Decompositions of Dense Partite Graphs , 2016, Combinatorics, Probability and Computing.

[11]  Peter J. Dukes,et al.  Rational decomposition of dense hypergraphs and some related eigenvalue estimates , 2011 .

[12]  Béla Bollobás,et al.  Random Graphs , 1985 .

[13]  Padraic James Bartlett Completions of ε-Dense Partial Latin Squares: COMPLETIONS OF ε-DENSE PARTIAL LATIN SQUARES , 2013 .

[14]  Amelia Taylor,et al.  Substructures in large graphs , 2017 .

[15]  Daniela Kühn,et al.  Edge-decompositions of graphs with high minimum degree , 2014, Electron. Notes Discret. Math..

[16]  Ian M. Wanless,et al.  A Generalisation of Transversals for Latin Squares , 2002, Electron. J. Comb..

[17]  P. Bartlett Completions of ε-Dense Partial Latin Squares , 2013 .

[18]  Raphael Yuster,et al.  Asymptotically optimal Kk-packings of dense graphs via fractional Kk-decompositions , 2005, J. Comb. Theory, Ser. B.

[19]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[20]  Klas Markström,et al.  A Multipartite Version of the Hajnal–Szemerédi Theorem for Graphs and Hypergraphs , 2011, Combinatorics, Probability and Computing.

[21]  A. J. W. HILTON THANK EVANS ! , 1983 .

[22]  Daniela Kühn,et al.  Edge‐disjoint Hamilton cycles in random graphs , 2011, Random Struct. Algorithms.

[23]  Peter J. Dukes,et al.  Fractional triangle decompositions of dense $3$-partite graphs , 2015, Journal of Combinatorics.

[24]  Svante Janson,et al.  Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.

[25]  Matthias Kriesell,et al.  Asymptotically optimal K k -packings of dense graphs via fractional K k -decompositions , 2005 .

[26]  Peter Keevash The existence of designs , 2014, 1401.3665.

[27]  Paul Erdös,et al.  On the Maximal Number of Pairwise Orthogonal Latin Squares of a Given Order , 1960, Canadian Journal of Mathematics.

[28]  Raphael Yuster,et al.  Integer and fractional packing of families of graphs , 2005 .

[29]  Daniela Kühn,et al.  Fractional clique decompositions of dense graphs and hypergraphs , 2015, J. Comb. Theory, Ser. B.