Finite-difference time-domain simulation of a liquid-crystal optical phased array.

Accurate modeling of a high-resolution, liquid-crystal-based, optical phased array (OPA) is demonstrated. The modeling method is extendable to cases where the array element size is close to the wavelength of light. This is accomplished through calculating an equilibrium liquid-crystal (LC) director field that takes into account the fringing electric fields in LC OPAs with small array elements and by calculating the light transmission with a finite-difference time-domain method that has been extended for use in birefringent materials. The diffraction efficiency for a test device is calculated and compared with the simulation.

[1]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[2]  Philip J. Bos,et al.  Performance evaluation of a liquid-crystal-on-silicon spatial light modulator , 2004 .

[3]  Computing the liquid crystal director field in optical phased arrays , 2004 .

[4]  Philip J. Bos,et al.  LC3D : liquid crystal 3-D director simulator : software and technology guide , 2001 .

[5]  R C Sharp,et al.  Spatially resolved phase imaging of a programmable liquid-crystal grating. , 1996, Applied optics.

[6]  Edward A. Watson,et al.  Measurement and modeling of the angular dispersion in liquid crystal broadband beam steering devices , 1996 .

[7]  Philip J. Bos,et al.  Comparison of Analytical Calculations to Finite-Difference Time-Domain Simulations of One-Dimensional Spatially Varying Anisotropic Liquid Crystal Structures , 1999 .

[8]  E. Wolf,et al.  Principles of Optics (7th Ed) , 1999 .

[9]  Eldad Bahat Treidel,et al.  On the fringing-field effect in liquid-crystal beam-steering devices. , 2004, Applied optics.

[10]  Amir Yefet,et al.  A staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations , 2001 .

[11]  J A Anderson,et al.  Asymmetric transmissive behavior of liquid-crystal diffraction gratings. , 2001, Optics letters.

[12]  Emmanouil E. Kriezis,et al.  Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method , 2000 .

[13]  Roy Matic Blazed phase liquid crystal beam steering , 1994, Photonics West - Lasers and Applications in Science and Engineering.

[14]  Mark T. Gruneisen,et al.  Compensated imaging by real-time holography with optically addressed liquid crystal spatial light modulators , 1997, Optics & Photonics.

[15]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[16]  Edward A. Watson,et al.  Optical phased array technology , 1996, Proc. IEEE.

[17]  D. S. Hobbs,et al.  High-efficiency liquid-crystal optical phased-array beam steering. , 1996, Optics letters.

[18]  Philip J. Bos,et al.  Study of switchable liquid crystal polymer grating by finite-difference time-domain calculation , 2004, SPIE Optics + Photonics.

[19]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[20]  L. Blinov,et al.  Electro-optical effects in liquid crystals , 1975 .

[21]  R. O. Smith Techniques and Analysis , 1962 .

[22]  G. Love,et al.  Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator. , 1997, Applied Optics.

[23]  D Psaltis,et al.  Liquid-crystal blazed-grating beam deflector. , 2000, Applied optics.

[24]  Ty Martinez,et al.  Holographic compensation of severe dynamic aberrations in membrane-mirror-based telescope systems , 1999, Optics + Photonics.