Non-intrusive methods for probabilistic uncertainty quantification and global sensitivity analysis in nonlinear stochastic phenomena

The objective of this work is to quantify uncertainty and perform global sensitivity analysis for nonlinear models with a moderate or large number of stochastic parameters. We implement nonintrusive methods that do not require modification of the programming code of the underlying deterministic model. To avoid the curse of dimensionality, two methods, namely sampling methods and high dimensional model representation are employed to propagate uncertainty and compute global sensitivity indices. Variance-based global sensitivity analysis identifies significant and insignificant model parameters. It also provides basis for reducing a model’s stochastic dimension by freezing identified insignificant model parameters at their nominal values. The dimension-reduced model can then be analyzed efficiently. We use uncertainty quantification and global sensitivity analysis in three applications. The first application is to the Rothermel wildland surface fire spread model, which consists of around 80 nonlinear algebraic equations and 24 parameters. We find the reduced models for the selected model outputs and apply efficient sampling methods to quantify the uncertainty. High dimensional model representation is also applied for the Rothermel model for comparison. The second application is to a recently developed biological model that describes inflammatory host response to a bacterial infection. The model involves four nonlinear coupled ordinary differential equations and the dimension of the stochastic space is 16. We compute global sensitivity indices for all parameters and build a dimension-reduced model. The sensitivity results, combined with experiments, can improve the validity of the model. The third application quantifies the uncertainty of weather derivative models and investigates model robustness based on global sensitivity analysis. Three commonly used weather derivative models for the daily average temperature are considered. The one which is least influenced by an increase of parametric uncertainty level is identified as robust. In summary, the following contributions are made in this dissertation: • The optimization of sensitivity derivative enhanced sampling that guarantees variance reduction and improved estimation of stochastic moments.

[1]  I. Sobol Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[2]  L. Debnath Nonlinear Partial Differential Equations for Scientists and Engineers , 1997 .

[3]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[4]  K. Shuler,et al.  A STUDY OF THE SENSITIVITY OF COUPLED REACTION SYSTEMS TO UNCERTAINTIES IN RATE COEFFICIENTS . II , 2014 .

[5]  Gary Tang,et al.  Mixed aleatory-epistemic uncertainty quantification with stochastic expansions and optimization-based interval estimation , 2011, Reliab. Eng. Syst. Saf..

[6]  D. Xiu Efficient collocational approach for parametric uncertainty analysis , 2007 .

[7]  A. Keegan,et al.  Suppression of the Inflammatory Immune Response Prevents the Development of Chronic Biofilm Infection Due to Methicillin-Resistant Staphylococcus aureus , 2011, Infection and Immunity.

[8]  C. Fortuin,et al.  Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory , 1973 .

[9]  J. Gentle Random number generation and Monte Carlo methods , 1998 .

[10]  Dennis K. J. Lin,et al.  Random Number Generation for the New Century , 2000 .

[11]  E. Cliff,et al.  USING SENSITIVITY EQUATIONS FOR CHEMICALLY REACTING FLOWS , 1998 .

[12]  J. M. Sek,et al.  On the L2-discrepancy for anchored boxes , 1998 .

[13]  F. Egolfopoulos,et al.  An optimized kinetic model of H2/CO combustion , 2005 .

[14]  Francis Fujioka,et al.  A new method for the analysis of fire spread modeling errors , 2002 .

[15]  A. Saltelli,et al.  A quantitative model-independent method for global sensitivity analysis of model output , 1999 .

[16]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[17]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[18]  Maximilian Wimmer,et al.  Temperature models for pricing weather derivatives , 2010 .

[19]  S. Zaremba The Mathematical Basis of Monte Carlo and Quasi-Monte Carlo Methods , 1968 .

[20]  Mihai Anitescu,et al.  Mixed Aleatory/Epistemic Uncertainty Quantification for Hypersonic Flows via Gradient-Based Optimization and Surrogate Models , 2012 .

[21]  Dongxiao Zhang,et al.  A Comparative Study on Uncertainty Quantification for Flow in Randomly Heterogeneous Media Using Monte Carlo Simulations and Conventional and KL-Based Moment-Equation Approaches , 2005, SIAM J. Sci. Comput..

[22]  Andrea Saltelli,et al.  An effective screening design for sensitivity analysis of large models , 2007, Environ. Model. Softw..

[23]  Patricia L. Andrews,et al.  BehavePlus fire modeling system: Past, present, and future , 2007 .

[24]  Giray Ökten,et al.  Parameterization based on randomized quasi-Monte Carlo methods , 2008, 2008 IEEE International Symposium on Parallel and Distributed Processing.

[25]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[26]  M. Eldred Recent Advances in Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Analysis and Design , 2009 .

[27]  Stephen Jewson,et al.  Weather Derivative Valuation , 2005 .

[28]  N. Wiener The Homogeneous Chaos , 1938 .

[29]  K. A. Cliffe,et al.  Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..

[30]  Sean D. Campbell,et al.  Weather Forecasting for Weather Derivatives , 2002 .

[31]  Guoqiang Li,et al.  A fast and accurate operational model of ionospheric electron density , 2003 .

[32]  A Goldbeter,et al.  Minimal model for signal-induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Pol D. Spanos,et al.  Spectral Stochastic Finite-Element Formulation for Reliability Analysis , 1991 .

[34]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[35]  Christos C. Chamis,et al.  Probabilistic Analysis and Density Parameter Estimation Within Nessus , 2002 .

[36]  M. Yousuff Hussaini,et al.  Exploitation of Sensitivity Derivatives for Improving Sampling Methods , 2003 .

[37]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[38]  Ofodike A. Ezekoye,et al.  Treatment of design fire uncertainty using Quadrature Method of Moments , 2008 .

[39]  M. Finney FARSITE : Fire Area Simulator : model development and evaluation , 1998 .

[40]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[41]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[42]  Y. Hong,et al.  Uncertainty quantification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrologic response , 2004 .

[43]  Patricia L. Andrews,et al.  Introduction To Wildland Fire , 1984 .

[44]  Paul N. Swarztrauber,et al.  FFT algorithms for vector computers , 1984, Parallel Comput..

[45]  R. H. Myers,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[46]  Thomas A. Zang,et al.  An Efficient Monte Carlo Method for Optimal Control Problems with Uncertainty , 2003, Comput. Optim. Appl..

[47]  M. Hussaini,et al.  Variance reduction method based on sensitivity derivatives, Part 2 , 2013 .

[48]  Mahmoud H. Alrefaei,et al.  An adaptive Monte Carlo integration algorithm with general division approach , 2008, Math. Comput. Simul..

[49]  H. Rabitz,et al.  Practical Approaches To Construct RS-HDMR Component Functions , 2002 .

[50]  Charles W. McHugh,et al.  A Method for Ensemble Wildland Fire Simulation , 2011 .

[51]  W. T. Martin,et al.  The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .

[52]  W. L. Dunn,et al.  Exploring Monte Carlo Methods , 2011 .

[53]  Boualem Djehiche,et al.  On modelling and pricing weather derivatives , 2002 .

[54]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[55]  Yuan Guo-xing,et al.  Verification and Validation in Scientific Computing Code , 2010 .

[56]  Thomas A. Zang,et al.  Stochastic approaches to uncertainty quantification in CFD simulations , 2005, Numerical Algorithms.

[57]  Judith Winterkamp,et al.  Studying wildfire behavior using FIRETEC , 2002 .

[58]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[59]  Janette M. Harro,et al.  Murine Immune Response to a Chronic Staphylococcus aureus Biofilm Infection , 2011, Infection and Immunity.

[60]  Roger Ghanem,et al.  Stochastic Finite Element Analysis for Multiphase Flow in Heterogeneous Porous Media , 1998 .

[61]  D. Cacuci,et al.  SENSITIVITY and UNCERTAINTY ANALYSIS , 2003 .

[62]  Josep Piñol,et al.  Global sensitivity analysis and scale effects of a fire propagation model used over Mediterranean shrublands , 2001 .

[63]  M. Yousuff Hussaini,et al.  Quantifying parametric uncertainty in the Rothermel model , 2008 .

[64]  F. Albini Estimating Wildfire Behavior and Effects , 1976 .

[65]  Dongbin Xiu,et al.  Numerical approach for quantification of epistemic uncertainty , 2010, J. Comput. Phys..

[66]  Michael C. Fu,et al.  Guest editorial , 2003, TOMC.

[67]  Britta Allgöwer,et al.  Uncertainty propagation in wildland fire behaviour modelling , 2002, Int. J. Geogr. Inf. Sci..

[68]  Stephen Jewson,et al.  The use of weather forecasts in the pricing of weather derivatives , 2002 .

[69]  H. Rabitz,et al.  High Dimensional Model Representations , 2001 .

[70]  L. E. Clarke,et al.  Probability and Measure , 1980 .

[71]  Max D. Morris,et al.  Factorial sampling plans for preliminary computational experiments , 1991 .

[72]  Giray Ökten,et al.  Generalized von Neumann-Kakutani transformation and random-start scrambled Halton sequences , 2009, J. Complex..

[73]  G. Karniadakis,et al.  Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..

[74]  L. Mathelin,et al.  A Stochastic Collocation Algorithm for Uncertainty Analysis , 2003 .

[75]  H. Rabitz,et al.  Efficient input-output model representations , 1999 .

[76]  M. Yousuff Hussaini,et al.  Optimization of a Monte Carlo variance reduction method based on sensitivity derivatives , 2013 .

[77]  Art B. Owen,et al.  Latin supercube sampling for very high-dimensional simulations , 1998, TOMC.

[78]  Stamatis Stamatiadis,et al.  auto_deriv: Tool for automatic differentiation of a Fortran code , 2010, Comput. Phys. Commun..

[79]  Frances Y. Kuo,et al.  Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications , 2011, J. Comput. Phys..

[80]  Alison S. Tomlin,et al.  Global sensitivity analysis of a 3D street canyon model—Part I: The development of high dimensional model representations , 2008 .

[81]  A. Owen,et al.  Control variates for quasi-Monte Carlo , 2005 .

[82]  D. Brody,et al.  Dynamical pricing of weather derivatives , 2002 .

[83]  George J. Klir,et al.  Uncertainty Modeling and Analysis in Engineering and the Sciences (Hardcover) , 2006 .

[84]  Siuli Mukhopadhyay,et al.  Response surface methodology , 2010 .

[85]  George E. Karniadakis,et al.  The multi-element probabilistic collocation method (ME-PCM): Error analysis and applications , 2008, J. Comput. Phys..

[86]  Wr Catchpole,et al.  Modelling Moisture Damping for Fire Spread in a Mixture of Live and Dead Fuels , 1991 .

[87]  Laura Painton Swiler,et al.  Epistemic Uncertainty Quantification Tutorial , 2008 .

[88]  A. Saltelli,et al.  Making best use of model evaluations to compute sensitivity indices , 2002 .

[89]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[90]  A. Camper,et al.  Identification of Staphylococcus aureus Proteins Recognized by the Antibody-Mediated Immune Response to a Biofilm Infection , 2006, Infection and Immunity.

[91]  G. Ökten,et al.  Random and Deterministic Digit Permutations of the Halton Sequence , 2012 .

[92]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[93]  M. Y. Hussaini,et al.  A variance reduction method based on sensitivity derivatives , 2006 .

[94]  M. Shirtliff,et al.  Resolution of Staphylococcus aureus Biofilm Infection Using Vaccination and Antibiotic Treatment , 2011, Infection and Immunity.

[95]  Nathan Lay,et al.  A systematic study of efficient sampling methods to quantify uncertainty in crack propagation and the Burgers equation , 2010, Monte Carlo Methods Appl..

[96]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[97]  Craig B. Borkowf,et al.  Random Number Generation and Monte Carlo Methods , 2000, Technometrics.

[98]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[99]  F. Benth,et al.  The volatility of temperature and pricing of weather derivatives , 2007 .

[100]  Jirí Matousek,et al.  On the L2-Discrepancy for Anchored Boxes , 1998, J. Complex..

[101]  J. Hammersley SIMULATION AND THE MONTE CARLO METHOD , 1982 .

[102]  G. Ökten,et al.  Randomized quasi-Monte Carlo methods in pricing securities , 2004 .

[103]  R Heinrich,et al.  Analysing the robustness of cellular rhythms. , 2005, Systems biology.

[104]  Pierre L'Ecuyer,et al.  Recent Advances in Randomized Quasi-Monte Carlo Methods , 2002 .

[105]  H. Niederreiter Quasi-Monte Carlo methods and pseudo-random numbers , 1978 .