Clogging-Free Electrospinning of Polycaprolactone Using Acetic Acid/Acetone Mixture

ABSTRACT Clogging of polymer at the tip of the needle is a major problem in electrospinning that hinders the continuous electrospinning. A new combination of two environmentally benign solvents, acetone/acetic acid mixture, was investigated to eliminate clogging. Our results show that the use of acetone/acetic acid mixture in the ratio 3:7 as the solvent system completely avoided the clogging. GRAPHICAL ABSTRACT

[1]  Sabu Thomas,et al.  Nanomedicine and Tissue Engineering: State of the Art and Recent Trends , 2016 .

[2]  Sabu Thomas,et al.  Effect of zinc oxide nanoparticles on the in vitro degradation of electrospun polycaprolactone membranes in simulated body fluid , 2016 .

[3]  Dirk Herrmann,et al.  An Introduction To Electrospinning And Nanofibers , 2016 .

[4]  Sabu Thomas,et al.  Electrospun poly(ε-caprolactone)-based skin substitutes: In vivo evaluation of wound healing and the mechanism of cell proliferation. , 2015, Journal of biomedical materials research. Part B, Applied biomaterials.

[5]  Sabu Thomas,et al.  Dose-Dependent Effects of Gamma Irradiation on the Materials Properties and Cell Proliferation of Electrospun Polycaprolactone Tissue Engineering Scaffolds , 2015 .

[6]  Sabu Thomas,et al.  An in vitro method for the determination of microbial barrier property (MBP) of porous polymeric membranes for skin substitute and wound dressing applications , 2014, Tissue Engineering and Regenerative Medicine.

[7]  Sabu Thomas,et al.  Advancement of wound care from grafts to bioengineered smart skin substitutes , 2014, Progress in Biomaterials.

[8]  Sabu Thomas,et al.  Investigation of angiogenesis and its mechanism using zinc oxide nanoparticle-loaded electrospun tissue engineering scaffolds , 2014 .

[9]  Sabu Thomas,et al.  Electrospun polycaprolactone membranes incorporated with ZnO nanoparticles as skin substitutes with enhanced fibroblast proliferation and wound healing , 2014 .

[10]  H. Uyama,et al.  Hybrid Organic-Inorganic Nanocomposites Based on Poly(ϵ-Caprolactone)/Polyhedral Oligomeric Silsesquioxane: Synthesis and In Vitro Evaluations , 2014 .

[11]  M. Białek,et al.  Oxovanadium(IV) complexes with [ONNO]-chelating ligands as catalysts for ethylene homo- and copolymerization , 2014, Journal of Polymer Research.

[12]  Sabu Thomas,et al.  Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties , 2014, Journal of Polymer Research.

[13]  Robin Augustine,et al.  Biopolymers for Health, Food, and Cosmetic Applications , 2013 .

[14]  S. Bazgir,et al.  The Effect of Flow Rate on Morphology and Deposition Area of Electrospun Nylon 6 Nanofiber , 2012 .

[15]  D. Haynie,et al.  Protein- and peptide-based electrospun nanofibers in medical biomaterials. , 2012, Nanomedicine : nanotechnology, biology, and medicine.

[16]  A. Gnanamani,et al.  Electrospinning of type I collagen and PCL nanofibers using acetic acid , 2012 .

[17]  E Stride,et al.  Electrospinning versus fibre production methods: from specifics to technological convergence. , 2012, Chemical Society reviews.

[18]  Tong Lin,et al.  Upward Needleless Electrospinning of Nanofibers , 2012 .

[19]  Xin Wang,et al.  Needleless electrospinning of uniform nanofibers using spiral coil spinnerets , 2012 .

[20]  Fang Liao,et al.  Synthesis of poly(ortho-phenylenediamine) fluffy microspheres and application for the removal of Cr(VI) , 2012 .

[21]  D. Haynie,et al.  A synthetic polypeptide electrospun biomaterial. , 2011, ACS applied materials & interfaces.

[22]  H. Karami,et al.  Synthesis and Characterization of ZnO Nanorods Based on a New Gel Pyrolysis Method , 2011 .

[23]  S. Agarwal,et al.  On the way to clean and safe electrospinning—green electrospinning: emulsion and suspension electrospinning , 2011 .

[24]  A. G. Kanani,et al.  Effect of changing solvents on poly(ε-caprolactone) nanofibrous webs morphology , 2011 .

[25]  K. Kanjanapongkul,et al.  Investigation and Prevention of Clogging During Electrospinning of Zein Solution , 2010 .

[26]  D. Haynie,et al.  Insoluble synthetic polypeptide mats from aqueous solution by electrospinning. , 2010, ACS applied materials & interfaces.

[27]  Daoheng Sun,et al.  High throughput tip-less electrospinning via a circular cylindrical electrode. , 2010, Journal of nanoscience and nanotechnology.

[28]  George K Stylios,et al.  Effect of Experimental Parameters on the Morphology of Electrospun Nylon 6 fibres , 2010 .

[29]  Tae Gwan Park,et al.  Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. , 2009, Advanced drug delivery reviews.

[30]  S. A. H. Ravandi,et al.  Electrospinning of chitosan nanofibers: Processing optimization , 2009 .

[31]  S. Hudson,et al.  Effect of the addition of a fugitive salt on electrospinnability of poly(ɛ-caprolactone) , 2009 .

[32]  J. M. Silva,et al.  A systematic study of solution and processing parameters on nanofiber morphology using a new electrospinning apparatus. , 2009, Journal of nanoscience and nanotechnology.

[33]  F. Zhou,et al.  Mass production of nanofibre assemblies by electrostatic spinning , 2009 .

[34]  Tong Lin,et al.  Large-scale electrospinning of polymer nanofibers using needleless nozzle , 2009 .

[35]  D. Kalyon,et al.  Functionally graded electrospun polycaprolactone and beta-tricalcium phosphate nanocomposites for tissue engineering applications. , 2008, Biomaterials.

[36]  Horst A von Recum,et al.  Electrospinning: applications in drug delivery and tissue engineering. , 2008, Biomaterials.

[37]  Andreas Greiner,et al.  Electrospun biodegradable nanofiber nonwovens for controlled release of proteins. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[38]  C. Lim,et al.  Effects of crystalline morphology on the tensile properties of electrospun polymer nanofibers , 2008 .

[39]  Fang Yang,et al.  Biomimetic calcium phosphate coating on electrospun poly(ɛ-caprolactone) scaffolds for bone tissue engineering , 2008 .

[40]  J. Lannutti,et al.  Materials selection and residual solvent retention in biodegradable electrospun fibers , 2008 .

[41]  P. Supaphol,et al.  Electrospun cellulose acetate fibers: effect of solvent system on morphology and fiber diameter , 2007 .

[42]  C. Elias,et al.  The physical characterization of a thermoplastic polymer for endodontic obturation. , 2006, Journal of dentistry.

[43]  R. W. Tock,et al.  Electrospinning of nanofibers , 2005 .

[44]  W. Park,et al.  Electrospinning of ultrafine cellulose acetate fibers: Studies of a new solvent system and deacetylation of ultrafine cellulose acetate fibers , 2004 .

[45]  M. Kotaki,et al.  A review on polymer nanofibers by electrospinning and their applications in nanocomposites , 2003 .

[46]  Seung Goo Lee,et al.  The change of bead morphology formed on electrospun polystyrene fibers , 2003 .

[47]  J. Schultz,et al.  Quantitative calculation of the orientation angles of adsorbed polyamides nanofilms , 2003 .

[48]  Darrell H. Reneker,et al.  Nanofiber garlands of polycaprolactone by electrospinning , 2002 .

[49]  Darrell H. Reneker,et al.  Beaded nanofibers formed during electrospinning , 1999 .