Comparative ionospheric impacts and solar origins of nine strong geomagnetic storms in 2010–2015

For nine of the strongest geomagnetic storms in solar cycle 24 we characterize, quantify, and compare the impacts on ionospheric total electron content (TEC) and the U.S. Wide Area Augmentation System (WAAS) with the heliospheric morphology and kinematics of the responsible coronal mass ejections (CMEs) and their solar source regions. Regional TEC responses to the events are similar in many respects, especially in the initial positive phase. For the subsequent negative phase, Dst is a better indicator than ap of the magnitude of the TEC decrease. The five events that arrive between 13:00 UT and 21:00 UT (local daytime in the U.S.) produce large WAAS degradations, and the four events that arrive outside this time of day produce lesser or no WAAS degradation. Our sample of geoeffective events includes CMEs with only modestly fast speeds, ones that only provided glancing impacts on Earth by their shock sheaths and ones not associated with any significant flare. While all of the CMEs traveled faster than the solar wind, they nevertheless have a wide range of velocities and produced a range of Bz values; neither speed nor Bz correlates significantly with ionospheric impact. Comparison with the locations of surface activity leads to estimates of deflection for the CMEs, with the average deflection being 19°. At least a few events may have missed Earth entirely in the absence of coronal deflection.

[1]  L. P. Karakatsanis,et al.  THE MAJOR GEOEFFECTIVE SOLAR ERUPTIONS OF 2012 MARCH 7: COMPREHENSIVE SUN-TO-EARTH ANALYSIS , 2016 .

[2]  M. Linton,et al.  IMAGING PROMINENCE ERUPTIONS OUT TO 1 AU , 2015, 1512.06748.

[3]  N. Gopalswamy,et al.  Properties and geoeffectiveness of magnetic clouds during solar cycles 23 and 24 , 2015, Journal of Geophysical Research: Space Physics.

[4]  Kunihiro Keika,et al.  Pileup accident hypothesis of magnetic storm on 17 March 2015 , 2015 .

[5]  J. Meriwether,et al.  Thermospheric poleward wind surge at midlatitudes during great storm intervals , 2015 .

[6]  K. Kusano,et al.  No Major Solar Flares but the Largest Geomagnetic Storm in the Present Solar Cycle , 2015 .

[7]  Y.-M. Wang PSEUDOSTREAMERS AS THE SOURCE OF A SEPARATE CLASS OF SOLAR CORONAL MASS EJECTIONS , 2015 .

[8]  P. Liewer,et al.  Observations and Analysis of the Non-Radial Propagation of Coronal Mass Ejections Near the Sun , 2015 .

[9]  C. Borries,et al.  Ionospheric storms—A challenge for empirical forecast of the total electron content , 2015 .

[10]  Daniel E. Hastings,et al.  The Space Weather Threat to Situational Awareness, Communications, and Positioning Systems , 2015, IEEE Transactions on Plasma Science.

[11]  N. Lugaz,et al.  Ensemble Modeling of Successive Halo CMEs: A Case Study , 2015 .

[12]  S. Bruinsma,et al.  Global ionospheric and thermospheric response to the 5 April 2010 geomagnetic storm: An integrated data‐model investigation , 2014 .

[13]  R. Evans,et al.  GLOBAL TRENDS OF CME DEFLECTIONS BASED ON CME AND SOLAR PARAMETERS , 2014, 1410.4496.

[14]  J. Lean,et al.  Attribution of interminima changes in the global thermosphere and ionosphere , 2014 .

[15]  M. Temmer,et al.  COMBINED MULTIPOINT REMOTE AND IN SITU OBSERVATIONS OF THE ASYMMETRIC EVOLUTION OF A FAST SOLAR CORONAL MASS EJECTION , 2014, 1407.4687.

[16]  Yuming Wang,et al.  Full‐halo coronal mass ejections: Arrival at the Earth , 2014, 1406.4589.

[17]  A. Vourlidas,et al.  Solar Sources of Interplanetary Coronal Mass Ejections During the Solar Cycle 23/24 Minimum , 2014 .

[18]  J. Luhmann,et al.  Magnetic clouds and origins in STEREO era , 2014 .

[19]  A. B. Galvin,et al.  CONNECTING SPEEDS, DIRECTIONS AND ARRIVAL TIMES OF 22 CORONAL MASS EJECTIONS FROM THE SUN TO 1 AU , 2014, 1404.3579.

[20]  T. Walter,et al.  Effects of solar cycle 24 activity on WAAS navigation , 2014 .

[21]  A. Mannucci,et al.  Ionospheric redistribution during geomagnetic storms , 2013, Journal of geophysical research. Space physics.

[22]  R. Trines,et al.  ESTABLISHING A STEREOSCOPIC TECHNIQUE FOR DETERMINING THE KINEMATIC PROPERTIES OF SOLAR WIND TRANSIENTS BASED ON A GENERALIZED SELF-SIMILARLY EXPANDING CIRCULAR GEOMETRY , 2013 .

[23]  Edward W. Cliver,et al.  The 1859 space weather event revisited: limits of extreme activity , 2013 .

[24]  P. Mukhtarov,et al.  Global empirical model of TEC response to geomagnetic activity , 2013 .

[25]  M. L. Mays,et al.  A major solar eruptive event in July 2012: Defining extreme space weather scenarios , 2013 .

[26]  R. Evans,et al.  FORECASTING A CORONAL MASS EJECTION'S ALTERED TRAJECTORY: ForeCAT , 2013, 1307.7603.

[27]  A. Rabiu,et al.  The response of African equatorial GPS-TEC to intense geomagnetic storms during the ascending phase of solar cycle 24 , 2013 .

[28]  J. Richardson,et al.  ON SUN-TO-EARTH PROPAGATION OF CORONAL MASS EJECTIONS , 2013, 1512.07949.

[29]  A. Coster,et al.  Direct observations of the role of convection electric field in the formation of a polar tongue of ionization from storm enhanced density , 2013 .

[30]  R. G. Edwards,et al.  Extreme space weather: impacts on engineered systems and infrastructure , 2013 .

[31]  A. Vourlidas,et al.  How Many CMEs Have Flux Ropes? Deciphering the Signatures of Shocks, Flux Ropes, and Prominences in Coronagraph Observations of CMEs , 2012, 1207.1599.

[32]  A. Rouillard,et al.  A CORONAL HOLE'S EFFECTS ON CORONAL MASS EJECTION SHOCK MORPHOLOGY IN THE INNER HELIOSPHERE , 2012, 1206.3584.

[33]  P. Kintner,et al.  Heliospheric Observations of STEREO-Directed Coronal Mass Ejections in 2008 – 2010: Lessons for Future Observations of Earth-Directed CMEs , 2012, 1205.2526.

[34]  J. A. Davies,et al.  Speeds and Arrival Times of Solar Transients Approximated by Self-similar Expanding Circular Fronts , 2012, 1202.1299.

[35]  R. Schunk,et al.  A modeling study of the longitudinal dependence of storm time midlatitude dayside total electron content enhancements , 2012 .

[36]  J. Liu,et al.  Statistics of geomagnetic storms and ionospheric storms at low and mid latitudes in two solar cycles , 2011 .

[37]  J. Lean,et al.  Ionospheric total electron content: Global and hemispheric climatology , 2011 .

[38]  D. Odstrcil,et al.  INTERPRETING THE PROPERTIES OF SOLAR ENERGETIC PARTICLE EVENTS BY USING COMBINED IMAGING AND MODELING OF INTERPLANETARY SHOCKS , 2011 .

[39]  B. Gui,et al.  Quantitative Analysis of CME Deflections in the Corona , 2011, 1105.3382.

[40]  A. Rouillard,et al.  EMPIRICAL RECONSTRUCTION AND NUMERICAL MODELING OF THE FIRST GEOEFFECTIVE CORONAL MASS EJECTION OF SOLAR CYCLE 24 , 2011 .

[41]  B. Gui,et al.  Kinematic Evolution of a Slow CME in Corona Viewed by STEREO-B on 8 October 2007 , 2011, 1101.3205.

[42]  A. Galvin,et al.  STEREO and Wind observations of a fast ICME flank triggering a prolonged geomagnetic storm on 5–7 April 2010 , 2010, 1010.4150.

[43]  C. Russell,et al.  How unprecedented a solar minimum was it? , 2010, Journal of advanced research.

[44]  S. Kawamura,et al.  A physical mechanism of positive ionospheric storms at low latitudes and midlatitudes , 2010 .

[45]  N. Lugaz,et al.  Deriving the radial distances of wide coronal mass ejections from elongation measurements in the heliosphere - application to CME-CME interaction , 2009, 0909.0534.

[46]  R. Howard,et al.  AN EMPIRICAL RECONSTRUCTION OF THE 2008 APRIL 26 CORONAL MASS EJECTION , 2009 .

[47]  A. Vourlidas,et al.  Forward Modeling of Coronal Mass Ejections Using STEREO/SECCHI Data , 2009 .

[48]  C. Russell,et al.  Effects of the Weak Polar Fields of Solar Cycle 23: Investigation Using OMNI for the STEREO Mission Period , 2009 .

[49]  A. Garcia-Rigo,et al.  The IGS VTEC maps: a reliable source of ionospheric information since 1998 , 2009 .

[50]  Paul S. Cannon,et al.  Mitigation and exploitation of the ionosphere: A military perspective , 2009 .

[51]  J. Davies,et al.  The Heliospheric Imagers Onboard the STEREO Mission , 2009 .

[52]  J. Krall,et al.  Are All Coronal Mass Ejections Hollow Flux Ropes? , 2007 .

[53]  Michael Mendillo,et al.  Storms in the ionosphere: Patterns and processes for total electron content , 2006 .

[54]  A. Vourlidas,et al.  Modeling of Flux Rope Coronal Mass Ejections , 2006 .

[55]  T. Fuller‐Rowell,et al.  Consistent features of TEC changes during ionospheric storms , 2006 .

[56]  R. P. Kane How good is the relationship of solar and interplanetary plasma parameters with geomagnetic storms , 2005 .

[57]  Yuming Wang,et al.  An empirical formula relating the geomagnetic storm's intensity to the interplanetary parameters: − and Δt , 2003 .

[58]  Bruce T. Tsurutani,et al.  The extreme magnetic storm of 1–2 September 1859 , 2003 .

[59]  R. Lepping,et al.  Effects of magnetic clouds on the occurrence of geomagnetic storms: The first 4 years of Wind , 2002 .

[60]  C. J. Wolfson,et al.  Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) , 2000, SPIE Optics + Photonics.

[61]  M. Buonsanto Ionospheric Storms — A Review , 1999 .

[62]  J. Steinberg,et al.  Solar wind density intercomparisons on the WIND spacecraft using WAVES and SWE experiments , 1998 .

[63]  B. Low,et al.  A Time-dependent Three-dimensional Magnetohydrodynamic Model of the Coronal Mass Ejection , 1998 .

[64]  V. Bothmer,et al.  The structure and origin of magnetic clouds in the solar wind , 1997 .

[65]  P. Lamy,et al.  Evidence of an Erupting Magnetic Flux Rope: LASCO Coronal Mass Ejection of 1997 April 13 , 1997 .

[66]  T. Sanderson,et al.  Tracing the topology of the October 18–20, 1995, magnetic cloud with ∼0.1–10² keV electrons , 1997 .

[67]  P. Lamy,et al.  The Large Angle Spectroscopic Coronagraph (LASCO) , 1995 .

[68]  W. Neupert,et al.  EIT: Extreme-ultraviolet Imaging Telescope for the SOHO mission , 1995 .

[69]  F. Mariani,et al.  The WIND magnetic field investigation , 1995 .

[70]  H. W. Kroehl,et al.  What is a geomagnetic storm , 1994 .

[71]  Timothy Fuller-Rowell,et al.  Response of the thermosphere and ionosphere to geomagnetic storms , 1994 .

[72]  P. Lamy,et al.  The Large Angle Spectroscopic Coronagraph (LASCO): Visible light coronal imaging and spectroscopy , 1992 .

[73]  L. Burlaga,et al.  Magnetic field structure of interplanetary magnetic clouds at 1 AU , 1990 .

[74]  L. Burlaga,et al.  Magnetic clouds and force‐free fields with constant alpha , 1988 .

[75]  C. J. Wolfson,et al.  The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) , 2011 .

[76]  J. Keyser Empirical Reconstruction , 2008 .

[77]  Kenneth G. Powell,et al.  Three‐dimensional MHD simulation of a flux rope driven CME , 2004 .

[78]  S. Wu,et al.  Numerical Magnetohydrodynamic (MHD) Modeling of Coronal Mass Ejections (CMEs) , 2001 .

[79]  K. Marubashi Structure of the interplanetary magnetic clouds and their solar origins , 1986 .