Review of SI traceable force metrology for instrumented indentation and atomic force microscopy

This paper reviews the current status of small force metrology for quantitative instrumented indentation and atomic force microscopy (AFM), and in particular focuses on new electrical and deadweight standards of force developed at the National Institute of Standards and Technology (NIST). These standards provide metrological infrastructure so that users of instrumented indentation and AFM can achieve quantitative nanomechanical testing of materials, engineered surfaces and micro and nanoscale devices in terms of forces that are expressed in internationally accepted units of measure with quantified uncertainty.

[1]  R. Seugling,et al.  Traceable Force Metrology for Micronewton Level Calibration | NIST , 2004 .

[2]  J. Hedley,et al.  Quantitative analytical atomic force microscopy: a cantilever reference device for easy and accurate AFM spring-constant calibration , 2004 .

[3]  Jon R. Pratt,et al.  Progress toward Système International d’Unités traceable force metrology for nanomechanics , 2004 .

[4]  J. Hedley,et al.  Accurate analytical measurements in the atomic force microscope: a microfabricated spring constant standard potentially traceable to the SI , 2003, Nanotechnology.

[5]  Lutz Doering,et al.  Piezoresistive cantilever as portable micro force calibration standard , 2003 .

[6]  R.L. Steiner,et al.  Status of the NIST "electronic kilogram" experiment , 2002, Conference Digest Conference on Precision Electromagnetic Measurements.

[7]  Jon R. Pratt,et al.  The NIST microforce realization and measurement project , 2002, Conference Digest Conference on Precision Electromagnetic Measurements.

[8]  S. Woody,et al.  Compact Force Sensors for Low-Force Mechanical Probe Calibration | NIST , 2002 .

[9]  John S. Villarrubia,et al.  Nanoindentation of polymers: an overview , 2001 .

[10]  Z. J. Jabbour,et al.  The Kilogram and Measurements of Mass and Force , 2001, Journal of research of the National Institute of Standards and Technology.

[11]  James D. Holbery,et al.  Experimental determination of scanning probe microscope cantilever spring constants utilizing a nanoindentation apparatus , 2000 .

[12]  J. Lawall,et al.  Michelson Interferometry With 10 PM Accuracy , 2000 .

[13]  P. T. Olsen,et al.  Accurate Measurement of the Planck Constant , 1998 .

[14]  Marco Tortonese,et al.  Characterization of application-specific probes for SPMs , 1997, Photonics West.

[15]  J. Villarrubia Scanned probe microscope tip characterization without calibrated tip characterizers , 1996 .

[16]  Othmar Marti,et al.  Mechanical and thermal effects of laser irradiation on force microscope cantilevers , 1992 .

[17]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[18]  J. Houston,et al.  A new force sensor incorporating force‐feedback control for interfacial force microscopy , 1991 .

[19]  T. Funck,et al.  Determination of the volt with the improved PTB voltage balance , 1990, Conference on Precision Electromagnetic Measurements.

[20]  Jon R. Pratt,et al.  Microforce and Instrumented Indentation Research at the National Institute of Standards and Technology, Gaithersburg, MD | NIST , 2003 .

[21]  Jon R. Pratt,et al.  A Flexure Balance With Adjustable Restoring Torque for Nanonewton Force Measurement | NIST , 2002 .

[22]  Martyn C. Davies,et al.  Comparison of calibration methods for atomic-force microscopy cantilevers , 2002 .

[23]  Bryan Kibble,et al.  A Realization of the SI Watt by the NPL Moving-coil Balance , 1990 .

[24]  J. Israelachvili Intermolecular and surface forces , 1985 .