Auxiliary Model-Based Forgetting Factor Stochastic Gradient Algorithm for Dual-Rate Nonlinear Systems and its Application to a Nonlinear Analog Circuit

This paper studies the identification problem of dual-rate Hammerstein nonlinear systems. By means of the key-term separation principle, we develop a regression identification model with different input and output sampling rates. In order to promote the convergence rate of the stochastic gradient (SG) algorithm, an auxiliary model-based forgetting factor SG algorithm is derived. Finally, the proposed algorithm is applied to model a nonlinear analog circuit with dual-rate sampling and the simulation result shows the effectiveness of the algorithm.

[1]  Feng Ding,et al.  Combined parameter and output estimation of dual-rate systems using an auxiliary model , 2004, Autom..

[2]  Jie Ding,et al.  Bias compensation‐based parameter estimation for output error moving average systems , 2011 .

[3]  Feng Ding,et al.  Hierarchical Least Squares Estimation Algorithm for Hammerstein–Wiener Systems , 2012, IEEE Signal Processing Letters.

[4]  Feng Ding,et al.  Least squares estimation for a class of non-uniformly sampled systems based on the hierarchical identification principle , 2012, Circuits Syst. Signal Process..

[5]  Feng Ding,et al.  Parameter Identification and Intersample Output Estimation for Dual-Rate Systems , 2008, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[6]  Feng Ding,et al.  Data filtering based recursive least squares algorithm for Hammerstein systems using the key-term separation principle , 2013, Inf. Sci..

[7]  Feng Ding,et al.  Performance analysis of the auxiliary models based multi-innovation stochastic gradient estimation algorithm for output error systems , 2010, Digit. Signal Process..

[8]  Feng Ding,et al.  A modified stochastic gradient based parameter estimation algorithm for dual-rate sampled-data systems , 2010, Digit. Signal Process..

[9]  Feng Ding,et al.  Adaptive Digital Control of Hammerstein Nonlinear Systems with Limited Output Sampling , 2007, SIAM J. Control. Optim..

[10]  F. Ding,et al.  An auxiliary model based on a recursive least-squares parameter estimation algorithm for non-uniformly sampled multirate systems , 2009 .

[11]  Feng Ding,et al.  Hierarchical Least Squares Identification for Linear SISO Systems With Dual-Rate Sampled-Data , 2011, IEEE Transactions on Automatic Control.

[12]  Feng Ding,et al.  Auxiliary model-based least-squares identification methods for Hammerstein output-error systems , 2007, Syst. Control. Lett..

[13]  Feng Ding,et al.  Combined state and least squares parameter estimation algorithms for dynamic systems , 2014 .

[14]  Xiangli Li,et al.  Gradient-based iterative identification for MISO Wiener nonlinear systems: Application to a glutamate fermentation process , 2013, Appl. Math. Lett..

[15]  F. Ding Two-stage least squares based iterative estimation algorithm for CARARMA system modeling ☆ , 2013 .

[16]  Lincheng Zhou,et al.  Gradient based iterative parameter identification for Wiener nonlinear systems , 2013 .

[17]  Feng Ding,et al.  An efficient hierarchical identification method for general dual-rate sampled-data systems , 2014, Autom..

[18]  Yong Zhang,et al.  Bias compensation methods for stochastic systems with colored noise , 2011 .

[19]  F. Ding,et al.  Least‐squares parameter estimation for systems with irregularly missing data , 2009 .

[20]  Yong Zhang,et al.  Unbiased identification of a class of multi-input single-output systems with correlated disturbances using bias compensation methods , 2011, Math. Comput. Model..

[21]  Jozef Vörös,et al.  Recursive identification of Hammerstein systems with discontinuous nonlinearities containing dead-zones , 2003, IEEE Trans. Autom. Control..

[22]  Jie Sheng,et al.  Convergence of stochastic gradient estimation algorithm for multivariable ARX-like systems , 2010, Comput. Math. Appl..

[23]  Feng Ding,et al.  Performance analysis of multi-innovation gradient type identification methods , 2007, Autom..

[24]  J. Chu,et al.  Gradient-based and least-squares-based iterative algorithms for Hammerstein systems using the hierarchical identification principle , 2013 .

[25]  F. Ding,et al.  Newton iterative identification method for an input nonlinear finite impulse response system with moving average noise using the key variables separation technique , 2014, Nonlinear Dynamics.

[26]  Jozef Vörös Parametric Identification of Systems with General Backlash , 2012, Informatica.

[27]  Feng Ding,et al.  Hierarchical gradient based and hierarchical least squares based iterative parameter identification for CARARMA systems , 2014, Signal Process..

[28]  Yanjun Liu,et al.  Multi-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model , 2009, Appl. Math. Comput..

[29]  Jozef Vörös,et al.  Parameter identification of Wiener systems with multisegment piecewise-linear nonlinearities , 2007, Syst. Control. Lett..

[30]  F. Ding Hierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling , 2013 .

[31]  Tongwen Chen,et al.  Identification of dual‐rate systems based on finite impulse response models , 2004 .

[32]  Huizhong Yang,et al.  Modelling and identification for non-uniformly periodically sampled-data systems , 2010 .

[33]  F. Ding,et al.  Least squares algorithm for an input nonlinear system with a dynamic subspace state space model , 2014 .

[34]  Feng Ding,et al.  Self-tuning control based on multi-innovation stochastic gradient parameter estimation , 2009, Syst. Control. Lett..

[35]  Feng Ding,et al.  Multi-innovation Extended Stochastic Gradient Algorithm and Its Performance Analysis , 2010, Circuits Syst. Signal Process..

[36]  F. Ding Coupled-least-squares identification for multivariable systems , 2013 .

[37]  Jing Chen,et al.  An Auxiliary-Model-Based Stochastic Gradient Algorithm for Dual-Rate Sampled-Data Box–Jenkins Systems , 2013, Circuits Syst. Signal Process..

[38]  Feng Ding,et al.  Least squares based and gradient based iterative identification for Wiener nonlinear systems , 2011, Signal Process..

[39]  Jing Lu,et al.  Least squares based iterative identification for a class of multirate systems , 2010, Autom..

[40]  F. Ding,et al.  Iterative estimation methods for Hammerstein controlled autoregressive moving average systems based on the key-term separation principle , 2014 .

[41]  Xiangli Li,et al.  Least-squares-based iterative identification algorithm for Hammerstein nonlinear systems with non-uniform sampling , 2013, Int. J. Comput. Math..

[42]  Ruifeng Ding,et al.  Multi-innovation stochastic gradient parameter estimation for input nonlinear controlled autoregressive models , 2012 .

[43]  Feng Ding,et al.  Identification methods for Hammerstein nonlinear systems , 2011, Digit. Signal Process..

[44]  Feng Ding,et al.  Parameter estimation of dual-rate stochastic systems by using an output error method , 2005, IEEE Trans. Autom. Control..

[45]  Jie Ding,et al.  Auxiliary model based parameter estimation for dual-rate output error systems with colored noise ☆ , 2013 .

[46]  Junhong Li,et al.  Parameter estimation for Hammerstein CARARMA systems based on the Newton iteration , 2013, Appl. Math. Lett..